Visualization of differences between gradient descent methods
parent
56be8647f9
commit
871b6a46d1
|
@ -0,0 +1,129 @@
|
|||
from __future__ import print_function, division, unicode_literals
|
||||
import sys
|
||||
from math import sqrt
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
m = 100
|
||||
X = 2*np.random.rand(m, 1)
|
||||
X_b = np.c_[np.ones((m, 1)), X]
|
||||
y = 4 + 3*X + np.random.rand(m, 1)
|
||||
|
||||
fig = plt.figure(figsize=(10, 5))
|
||||
data_ax = fig.add_subplot(121)
|
||||
cost_ax = fig.add_subplot(122)
|
||||
|
||||
def batch_gradient_descent():
|
||||
n_iterations = 1000
|
||||
learning_rate = 0.05
|
||||
thetas = np.random.randn(2, 1)
|
||||
thetas_path = [thetas]
|
||||
for i in range(n_iterations):
|
||||
gradients = 2*X_b.T.dot(X_b.dot(thetas) - y)/m
|
||||
thetas = thetas - learning_rate*gradients
|
||||
thetas_path.append(thetas)
|
||||
|
||||
return thetas_path
|
||||
|
||||
def stochastic_gradient_descent():
|
||||
n_epochs = 50
|
||||
t0, t1 = 5, 50
|
||||
thetas = np.random.randn(2, 1)
|
||||
thetas_path = [thetas]
|
||||
for epoch in range(n_epochs):
|
||||
for i in range(m):
|
||||
random_index = np.random.randint(m)
|
||||
xi = X_b[random_index:random_index+1]
|
||||
yi = y[random_index:random_index+1]
|
||||
gradients = 2*xi.T.dot(xi.dot(thetas) - yi)
|
||||
eta = learning_schedule(epoch*m + i, t0, t1)
|
||||
thetas = thetas - eta*gradients
|
||||
thetas_path.append(thetas)
|
||||
|
||||
return thetas_path
|
||||
|
||||
def mini_batch_gradient_descent():
|
||||
n_iterations = 50
|
||||
minibatch_size = 20
|
||||
t0, t1 = 200, 1000
|
||||
thetas = np.random.randn(2, 1)
|
||||
thetas_path = [thetas]
|
||||
t = 0
|
||||
for epoch in range(n_iterations):
|
||||
shuffled_indices = np.random.permutation(m)
|
||||
X_b_shuffled = X_b[shuffled_indices]
|
||||
y_shuffled = y[shuffled_indices]
|
||||
for i in range(0, m, minibatch_size):
|
||||
t += 1
|
||||
xi = X_b_shuffled[i:i+minibatch_size]
|
||||
yi = y_shuffled[i:i+minibatch_size]
|
||||
gradients = 2*xi.T.dot(xi.dot(thetas) - yi)/minibatch_size
|
||||
eta = learning_schedule(t, t0, t1)
|
||||
thetas = thetas - eta*gradients
|
||||
thetas_path.append(thetas)
|
||||
|
||||
return thetas_path
|
||||
|
||||
def compute_mse(theta):
|
||||
return np.sum((np.dot(X_b, theta) - y)**2)/m
|
||||
|
||||
def learning_schedule(t, t0, t1):
|
||||
return t0/(t+t1)
|
||||
|
||||
if __name__ == '__main__':
|
||||
plt.ion()
|
||||
|
||||
theta0, theta1 = np.meshgrid(np.arange(0, 5, 0.1), np.arange(0, 5, 0.1))
|
||||
r, c = theta0.shape
|
||||
cost_map = np.array([[0 for _ in range(c)] for _ in range(r)])
|
||||
for i in range(r):
|
||||
for j in range(c):
|
||||
theta = np.array([theta0[i,j], theta1[i,j]])
|
||||
cost_map[i,j] = compute_mse(theta)
|
||||
|
||||
exact_solution = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
|
||||
bgd_thetas = np.array(batch_gradient_descent())
|
||||
sgd_thetas = np.array(stochastic_gradient_descent())
|
||||
mbgd_thetas = np.array(mini_batch_gradient_descent())
|
||||
|
||||
bgd_len = len(bgd_thetas)
|
||||
sgd_len = len(sgd_thetas)
|
||||
mbgd_len = len(mbgd_thetas)
|
||||
n_iter = min(bgd_len, sgd_len, mbgd_len)
|
||||
|
||||
cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*')
|
||||
cost_img = cost_ax.pcolor(theta0, theta1, cost_map)
|
||||
fig.colorbar(cost_img)
|
||||
|
||||
for i in range(n_iter):
|
||||
data_ax.cla()
|
||||
cost_ax.cla()
|
||||
|
||||
data_ax.plot(X, y, 'k.')
|
||||
|
||||
cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*')
|
||||
cost_ax.pcolor(theta0, theta1, cost_map)
|
||||
|
||||
data_ax.plot(X, X_b.dot(bgd_thetas[i,:]), 'r-')
|
||||
cost_ax.plot(bgd_thetas[:i,0], bgd_thetas[:i,1], 'r--')
|
||||
|
||||
data_ax.plot(X, X_b.dot(sgd_thetas[i,:]), 'g-')
|
||||
cost_ax.plot(sgd_thetas[:i,0], sgd_thetas[:i,1], 'g--')
|
||||
|
||||
data_ax.plot(X, X_b.dot(mbgd_thetas[i,:]), 'b-')
|
||||
cost_ax.plot(mbgd_thetas[:i,0], mbgd_thetas[:i,1], 'b--')
|
||||
|
||||
data_ax.set_xlim([0, 2])
|
||||
data_ax.set_ylim([0, 15])
|
||||
cost_ax.set_xlim([0, 5])
|
||||
cost_ax.set_ylim([0, 5])
|
||||
|
||||
data_ax.set_xlabel(r'$x_1$')
|
||||
data_ax.set_ylabel(r'$y$')
|
||||
cost_ax.set_xlabel(r'$\theta_0$')
|
||||
cost_ax.set_ylabel(r'$\theta_1$')
|
||||
|
||||
data_ax.legend(('Data', 'BGD', 'SGD', 'MBGD'))
|
||||
cost_ax.legend(('Normal Equation', 'BGD', 'SGD', 'MBGD'))
|
||||
|
||||
plt.pause(1e-5)
|
Loading…
Reference in New Issue