Update lib versions

main
Aurélien Geron 2022-02-19 18:49:54 +13:00
parent 9e5ee748d9
commit 8745a9c2ac
2 changed files with 55 additions and 74 deletions

View File

@ -3,53 +3,41 @@ channels:
- conda-forge
- defaults
dependencies:
- box2d-py # used only in chapter 17, exercise 8
- ftfy=6.0 # used only in chapter 15 by the transformers library
- graphviz # used only in chapter 5 for dot files
- gym=0.19 # used only in chapter 17
- ipython=7.28 # a powerful Python shell
- box2d-py # used only in chapter 18, exercise 8
- ftfy=5.5 # used only in chapter 16 by the transformers library
- graphviz # used only in chapter 6 for dot files
- python-graphviz # used only in chapter 6 for dot files
- ipython=8.0 # a powerful Python shell
- ipywidgets=7.6 # optionally used only in chapter 11 for tqdm in Jupyter
- joblib=0.14 # used only in chapter 2 to save/load Scikit-Learn models
- joblib=1.1 # used only in chapter 2 to save/load Scikit-Learn models
- jupyterlab=3.2 # to edit and run Jupyter notebooks
- matplotlib=3.4 # beautiful plots. See tutorial tools_matplotlib.ipynb
- matplotlib=3.5 # beautiful plots. See tutorial tools_matplotlib.ipynb
- nbdime=3.1 # optional tool to diff Jupyter notebooks
- nltk=3.6 # optionally used in chapter 3, exercise 4
- numexpr=2.7 # used only in the Pandas tutorial for numerical expressions
- numpy=1.19 # Powerful n-dimensional arrays and numerical computing tools
- opencv=4.5 # used only in chapter 17 by TF Agents for image preprocessing
- pandas=1.3 # data analysis and manipulation tool
- pillow=8.3 # image manipulation library, (used by matplotlib.image.imread)
- numexpr=2.8 # used only in the Pandas tutorial for numerical expressions
- numpy=1.22 # Powerful n-dimensional arrays and numerical computing tools
- pandas=1.4 # data analysis and manipulation tool
- pillow=9.0 # image manipulation library, (used by matplotlib.image.imread)
- pip # Python's package-management system
- py-xgboost=1.4 # used only in chapter 6 for optimized Gradient Boosting
- pyglet=1.5 # used only in chapter 17 to render environments
- pyopengl=3.1 # used only in chapter 17 to render environments
- python=3.8 # Python! Not using latest version as some libs lack support
- python-graphviz # used only in chapter 5 for dot files
#- pyvirtualdisplay=2.2 # used only in chapter 17 if on headless server
- requests=2.26 # used only in chapter 18 for REST API queries
- py-xgboost=1.5 # used only in chapter 6 for optimized Gradient Boosting
- pyglet=1.5 # used only in chapter 18 to render environments
- pyopengl=3.1 # used only in chapter 18 to render environments
- python=3.9 # Python! Not using latest version as some libs lack support
#- pyvirtualdisplay=2.2 # used only in chapter 18 if on headless server
- requests=2.27 # used only in chapter 19 for REST API queries
- scikit-learn=1.0 # machine learning library
- scipy=1.7 # scientific/technical computing library
- scipy=1.8 # scientific/technical computing library
- tqdm=4.62 # a progress bar library
- wheel # built-package format for pip
- widgetsnbextension=3.5 # interactive HTML widgets for Jupyter notebooks
- pip:
- tensorboard-plugin-profile~=2.5.0 # profiling plugin for TensorBoard
- tensorboard~=2.7.0 # TensorFlow's visualization toolkit
- tensorflow-addons~=0.14.0 # used only in chapter 15 for a seq2seq impl.
- tensorflow-datasets~=4.4.0 # datasets repository, ready to use
- tensorboard~=2.8.0 # TensorFlow's visualization toolkit
- tensorflow-addons~=0.15.0 # used in chapters 11 & 16 (for AdamW & seq2seq)
- tensorflow-datasets~=4.5.2 # datasets repository, ready to use
- tensorflow-hub~=0.12.0 # trained ML models repository, ready to use
- tensorflow-probability~=0.14.1 # Optional. Probability/Stats lib.
- tensorflow-serving-api~=2.6.0 # or tensorflow-serving-api-gpu if gpu
- tensorflow~=2.6.0 # Deep Learning library
- tf-agents~=0.10.0 # Reinforcement Learning lib based on TensorFlow
- tfx~=1.3.0 # platform to deploy production ML pipelines
- transformers~=4.11.3 # Natural Language Processing lib for TF or PyTorch
- urlextract~=1.4.0 # optionally used in chapter 3, exercise 4
- tensorflow-serving-api~=2.7.0 # or tensorflow-serving-api-gpu if gpu
- tensorflow~=2.7.1 # Deep Learning library
- transformers~=4.16.2 # Natural Language Processing lib for TF or PyTorch
- urlextract~=1.5.0 # optionally used in chapter 3, exercise 4
- gym[atari,accept-rom-license]~=0.21.0 # used only in chapter 18
# Specific lib versions to avoid conflicts
- attrs=20.3
- click=7.1
- packaging=20.9
- six=1.15
- typing-extensions=3.7

View File

@ -5,19 +5,19 @@
##### Core scientific packages
jupyterlab~=3.2.0
matplotlib~=3.4.3
numpy~=1.19.5
pandas~=1.3.3
scipy~=1.7.1
matplotlib~=3.5.0
numpy~=1.22.0
pandas~=1.4.0
scipy~=1.8.0
##### Machine Learning packages
scikit-learn~=1.0.1
scikit-learn~=1.0.2
# Optional: the XGBoost library is only used in chapter 6
xgboost~=1.4.2
# Optional: the XGBoost library is only used in chapter 7
xgboost~=1.5.0
# Optional: the transformers library is only using in chapter 15
transformers~=4.11.3
# Optional: the transformers library is only using in chapter 16
transformers~=4.16.2
##### TensorFlow-related packages
@ -27,23 +27,19 @@ transformers~=4.11.3
# you must install CUDA, cuDNN and more: see tensorflow.org for the detailed
# installation instructions.
tensorflow~=2.6.0
tensorflow~=2.7.1
# Optional: the TF Serving API library is just needed for chapter 18.
tensorflow-serving-api~=2.6.0 # or tensorflow-serving-api-gpu if gpu
tensorflow-serving-api~=2.7.0 # or tensorflow-serving-api-gpu if gpu
tensorboard~=2.7.0
tensorboard~=2.8.0
tensorboard-plugin-profile~=2.5.0
tensorflow-datasets~=4.4.0
tensorflow-datasets~=4.5.2
tensorflow-hub~=0.12.0
tensorflow-probability~=0.14.1
# Optional: only used in chapter 12.
tfx~=1.3.0
# Optional: used in chapters 11 & 16 (for AdamW & seq2seq)
tensorflow-addons~=0.15.0
# Optional: only used in chapter 15.
tensorflow-addons~=0.14.0
##### Reinforcement Learning library (chapter 17)
##### Reinforcement Learning library (chapter 18)
# There are a few dependencies you need to install first, check out:
# https://github.com/openai/gym#installing-everything
@ -51,45 +47,42 @@ gym[Box2D,atari,accept-rom-license]~=0.21.0
# WARNING: on Windows, installing Box2D this way requires:
# * Swig: http://www.swig.org/download.html
# * Microsoft C++ Build Tools: https://visualstudio.microsoft.com/visual-cpp-build-tools/
# * Microsoft C++ Build Tools:
# https://visualstudio.microsoft.com/visual-cpp-build-tools/
# It's much easier to use Anaconda instead.
tf-agents~=0.10.0
##### Image manipulation
Pillow~=8.4.0
graphviz~=0.17
opencv-python~=4.5.3.56
Pillow~=9.0.0
graphviz~=0.19.1
pyglet~=1.5.21
#pyvirtualdisplay # needed in chapter 17, if on a headless server
#pyvirtualdisplay # needed in chapter 18, if on a headless server
# (i.e., without screen, e.g., Colab or VM)
##### Additional utilities
# Efficient jobs (caching, parallelism, persistence)
joblib~=0.14.1
joblib~=1.1.0
# Easy http requests
requests~=2.26.0
requests~=2.27.0
# Nice utility to diff Jupyter Notebooks.
nbdime~=3.1.0
# May be useful with Pandas for complex "where" clauses (e.g., Pandas
# tutorial).
numexpr~=2.7.3
numexpr~=2.8.0
# Optional: these libraries can be useful in the chapter 3, exercise 4.
# Optional: these libraries can be useful in chapter 3, exercise 4.
nltk~=3.6.5
urlextract~=1.4.0
urlextract~=1.5.0
# Optional: these libraries are only used in chapter 15
ftfy~=6.0.3
# Optional: these libraries are only used in chapter 16
ftfy~=5.5.0
# Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook support
# Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook
# support
tqdm~=4.62.3
ipywidgets~=7.6.5