Make notebooks 14 to 19 runnable in Colab without changes

main
Aurélien Geron 2019-11-06 21:06:55 +08:00
parent 56d8c08d3e
commit 88dccccd5f
6 changed files with 244 additions and 63 deletions

View File

@ -14,6 +14,17 @@
"_This notebook contains all the sample code in chapter 14._" "_This notebook contains all the sample code in chapter 14._"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/14_deep_computer_vision_with_cnns.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
"</table>"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
@ -25,7 +36,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0-preview." "First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0."
] ]
}, },
{ {
@ -42,11 +53,23 @@
"import sklearn\n", "import sklearn\n",
"assert sklearn.__version__ >= \"0.20\"\n", "assert sklearn.__version__ >= \"0.20\"\n",
"\n", "\n",
"# TensorFlow ≥2.0-preview is required\n", "try:\n",
" # %tensorflow_version only exists in Colab.\n",
" %tensorflow_version 2.x\n",
" IS_COLAB = True\n",
"except Exception:\n",
" IS_COLAB = False\n",
"\n",
"# TensorFlow ≥2.0 is required\n",
"import tensorflow as tf\n", "import tensorflow as tf\n",
"from tensorflow import keras\n", "from tensorflow import keras\n",
"assert tf.__version__ >= \"2.0\"\n", "assert tf.__version__ >= \"2.0\"\n",
"\n", "\n",
"if not tf.test.is_gpu_available():\n",
" print(\"No GPU was detected. CNNs can be very slow without a GPU.\")\n",
" if IS_COLAB:\n",
" print(\"Go to Runtime > Change runtime and select a GPU hardware accelerator.\")\n",
"\n",
"# Common imports\n", "# Common imports\n",
"import numpy as np\n", "import numpy as np\n",
"import os\n", "import os\n",
@ -1412,7 +1435,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.8" "version": "3.7.3"
}, },
"nav_menu": {}, "nav_menu": {},
"toc": { "toc": {

View File

@ -14,6 +14,17 @@
"_This notebook contains all the sample code in chapter 15._" "_This notebook contains all the sample code in chapter 15._"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/15_processing_sequences_using_rnns_and_cnns.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
"</table>"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
@ -25,7 +36,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0-preview." "First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0."
] ]
}, },
{ {
@ -42,11 +53,23 @@
"import sklearn\n", "import sklearn\n",
"assert sklearn.__version__ >= \"0.20\"\n", "assert sklearn.__version__ >= \"0.20\"\n",
"\n", "\n",
"# TensorFlow ≥2.0-preview is required\n", "try:\n",
" # %tensorflow_version only exists in Colab.\n",
" %tensorflow_version 2.x\n",
" IS_COLAB = True\n",
"except Exception:\n",
" IS_COLAB = False\n",
"\n",
"# TensorFlow ≥2.0 is required\n",
"import tensorflow as tf\n", "import tensorflow as tf\n",
"from tensorflow import keras\n", "from tensorflow import keras\n",
"assert tf.__version__ >= \"2.0\"\n", "assert tf.__version__ >= \"2.0\"\n",
"\n", "\n",
"if not tf.test.is_gpu_available():\n",
" print(\"No GPU was detected. LSTMs and CNNs can be very slow without a GPU.\")\n",
" if IS_COLAB:\n",
" print(\"Go to Runtime > Change runtime and select a GPU hardware accelerator.\")\n",
"\n",
"# Common imports\n", "# Common imports\n",
"import numpy as np\n", "import numpy as np\n",
"import os\n", "import os\n",
@ -1116,8 +1139,6 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from tensorflow import keras\n",
"\n",
"class GatedActivationUnit(keras.layers.Layer):\n", "class GatedActivationUnit(keras.layers.Layer):\n",
" def __init__(self, activation=\"tanh\", **kwargs):\n", " def __init__(self, activation=\"tanh\", **kwargs):\n",
" super().__init__(**kwargs)\n", " super().__init__(**kwargs)\n",
@ -1367,7 +1388,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.8" "version": "3.7.3"
}, },
"nav_menu": {}, "nav_menu": {},
"toc": { "toc": {

View File

@ -14,6 +14,17 @@
"_This notebook contains all the sample code in chapter 16._" "_This notebook contains all the sample code in chapter 16._"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/16_nlp_with_rnns_and_attention.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
"</table>"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
@ -25,7 +36,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0-preview." "First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0."
] ]
}, },
{ {
@ -42,11 +53,24 @@
"import sklearn\n", "import sklearn\n",
"assert sklearn.__version__ >= \"0.20\"\n", "assert sklearn.__version__ >= \"0.20\"\n",
"\n", "\n",
"# TensorFlow ≥2.0-preview is required\n", "try:\n",
" # %tensorflow_version only exists in Colab.\n",
" %tensorflow_version 2.x\n",
" !pip install -q -U tensorflow-addons\n",
" IS_COLAB = True\n",
"except Exception:\n",
" IS_COLAB = False\n",
"\n",
"# TensorFlow ≥2.0 is required\n",
"import tensorflow as tf\n", "import tensorflow as tf\n",
"from tensorflow import keras\n", "from tensorflow import keras\n",
"assert tf.__version__ >= \"2.0\"\n", "assert tf.__version__ >= \"2.0\"\n",
"\n", "\n",
"if not tf.test.is_gpu_available():\n",
" print(\"No GPU was detected. LSTMs and CNNs can be very slow without a GPU.\")\n",
" if IS_COLAB:\n",
" print(\"Go to Runtime > Change runtime and select a GPU hardware accelerator.\")\n",
"\n",
"# Common imports\n", "# Common imports\n",
"import numpy as np\n", "import numpy as np\n",
"import os\n", "import os\n",
@ -1213,7 +1237,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.8" "version": "3.7.3"
}, },
"nav_menu": {}, "nav_menu": {},
"toc": { "toc": {

View File

@ -14,6 +14,17 @@
"_This notebook contains all the sample code in chapter 17._" "_This notebook contains all the sample code in chapter 17._"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/17_autoencoders_and_gans.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
"</table>"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
@ -25,7 +36,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0-preview." "First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0."
] ]
}, },
{ {
@ -42,11 +53,23 @@
"import sklearn\n", "import sklearn\n",
"assert sklearn.__version__ >= \"0.20\"\n", "assert sklearn.__version__ >= \"0.20\"\n",
"\n", "\n",
"# TensorFlow ≥2.0-preview is required\n", "try:\n",
" # %tensorflow_version only exists in Colab.\n",
" %tensorflow_version 2.x\n",
" IS_COLAB = True\n",
"except Exception:\n",
" IS_COLAB = False\n",
"\n",
"# TensorFlow ≥2.0 is required\n",
"import tensorflow as tf\n", "import tensorflow as tf\n",
"from tensorflow import keras\n", "from tensorflow import keras\n",
"assert tf.__version__ >= \"2.0\"\n", "assert tf.__version__ >= \"2.0\"\n",
"\n", "\n",
"if not tf.test.is_gpu_available():\n",
" print(\"No GPU was detected. LSTMs and CNNs can be very slow without a GPU.\")\n",
" if IS_COLAB:\n",
" print(\"Go to Runtime > Change runtime and select a GPU hardware accelerator.\")\n",
"\n",
"# Common imports\n", "# Common imports\n",
"import numpy as np\n", "import numpy as np\n",
"import os\n", "import os\n",
@ -1598,7 +1621,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.8" "version": "3.7.3"
}, },
"nav_menu": { "nav_menu": {
"height": "381px", "height": "381px",

View File

@ -14,6 +14,17 @@
"_This notebook contains all the sample code in chapter 18_." "_This notebook contains all the sample code in chapter 18_."
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/18_reinforcement_learning.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
"</table>"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
@ -25,7 +36,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0-preview." "First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0."
] ]
}, },
{ {
@ -42,11 +53,25 @@
"import sklearn\n", "import sklearn\n",
"assert sklearn.__version__ >= \"0.20\"\n", "assert sklearn.__version__ >= \"0.20\"\n",
"\n", "\n",
"# TensorFlow ≥2.0-preview is required\n", "try:\n",
" # %tensorflow_version only exists in Colab.\n",
" %tensorflow_version 2.x\n",
" !apt update && apt install -y libpq-dev libsdl2-dev swig xorg-dev xvfb\n",
" !pip install -q -U tf-agents-nightly pyvirtualdisplay gym[atari]\n",
" IS_COLAB = True\n",
"except Exception:\n",
" IS_COLAB = False\n",
"\n",
"# TensorFlow ≥2.0 is required\n",
"import tensorflow as tf\n", "import tensorflow as tf\n",
"from tensorflow import keras\n", "from tensorflow import keras\n",
"assert tf.__version__ >= \"2.0\"\n", "assert tf.__version__ >= \"2.0\"\n",
"\n", "\n",
"if not tf.test.is_gpu_available():\n",
" print(\"No GPU was detected. CNNs can be very slow without a GPU.\")\n",
" if IS_COLAB:\n",
" print(\"Go to Runtime > Change runtime and select a GPU hardware accelerator.\")\n",
"\n",
"# Common imports\n", "# Common imports\n",
"import numpy as np\n", "import numpy as np\n",
"import os\n", "import os\n",
@ -2752,7 +2777,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.7.4" "version": "3.7.3"
} }
}, },
"nbformat": 4, "nbformat": 4,

View File

@ -14,12 +14,23 @@
"_This notebook contains all the sample code in chapter 19._" "_This notebook contains all the sample code in chapter 19._"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/19_training_and_deploying_at_scale.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
"</table>"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Setup\n", "# Setup\n",
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0-preview.\n" "First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0.\n"
] ]
}, },
{ {
@ -36,11 +47,27 @@
"import sklearn\n", "import sklearn\n",
"assert sklearn.__version__ >= \"0.20\"\n", "assert sklearn.__version__ >= \"0.20\"\n",
"\n", "\n",
"# TensorFlow ≥2.0-preview is required\n", "try:\n",
" # %tensorflow_version only exists in Colab.\n",
" %tensorflow_version 2.x\n",
" !echo \"deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal\" > /etc/apt/sources.list.d/tensorflow-serving.list\n",
" !curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | apt-key add -\n",
" !apt update && apt-get install -y tensorflow-model-server\n",
" !pip install -q -U tensorflow-serving-api\n",
" IS_COLAB = True\n",
"except Exception:\n",
" IS_COLAB = False\n",
"\n",
"# TensorFlow ≥2.0 is required\n",
"import tensorflow as tf\n", "import tensorflow as tf\n",
"from tensorflow import keras\n", "from tensorflow import keras\n",
"assert tf.__version__ >= \"2.0\"\n", "assert tf.__version__ >= \"2.0\"\n",
"\n", "\n",
"if not tf.test.is_gpu_available():\n",
" print(\"No GPU was detected. CNNs can be very slow without a GPU.\")\n",
" if IS_COLAB:\n",
" print(\"Go to Runtime > Change runtime and select a GPU hardware accelerator.\")\n",
"\n",
"# Common imports\n", "# Common imports\n",
"import numpy as np\n", "import numpy as np\n",
"import os\n", "import os\n",
@ -292,11 +319,49 @@
"Once you are finished using it, press Ctrl-C to shut down the server." "Once you are finished using it, press Ctrl-C to shut down the server."
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alternatively, if `tensorflow_model_server` is installed (e.g., if you are running this notebook in Colab), then the following 3 cells will start the server:"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 17, "execution_count": 17,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [
"os.environ[\"MODEL_DIR\"] = os.path.split(os.path.abspath(model_path))[0]"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"%%bash --bg\n",
"nohup tensorflow_model_server \\\n",
" --rest_api_port=8501 \\\n",
" --model_name=my_mnist_model \\\n",
" --model_base_path=\"${MODEL_DIR}\" >server.log 2>&1"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"!tail server.log"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [ "source": [
"import json\n", "import json\n",
"\n", "\n",
@ -308,7 +373,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 18, "execution_count": 21,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -324,7 +389,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 19, "execution_count": 22,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -338,7 +403,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 20, "execution_count": 23,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -347,7 +412,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 21, "execution_count": 24,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -364,7 +429,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 22, "execution_count": 25,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -379,7 +444,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 23, "execution_count": 26,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -393,7 +458,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 24, "execution_count": 27,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -409,7 +474,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 25, "execution_count": 28,
"metadata": { "metadata": {
"scrolled": true "scrolled": true
}, },
@ -418,7 +483,7 @@
"output_name = model.output_names[0]\n", "output_name = model.output_names[0]\n",
"outputs_proto = response.outputs[output_name]\n", "outputs_proto = response.outputs[output_name]\n",
"y_proba = tf.make_ndarray(outputs_proto)\n", "y_proba = tf.make_ndarray(outputs_proto)\n",
"y_proba.numpy().round(2)" "y_proba.round(2)"
] ]
}, },
{ {
@ -430,7 +495,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 26, "execution_count": 29,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -450,7 +515,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 27, "execution_count": 30,
"metadata": { "metadata": {
"scrolled": true "scrolled": true
}, },
@ -460,7 +525,7 @@
"tf.random.set_seed(42)\n", "tf.random.set_seed(42)\n",
"\n", "\n",
"model = keras.models.Sequential([\n", "model = keras.models.Sequential([\n",
" keras.layers.Flatten(input_shape=[28, 28]),\n", " keras.layers.Flatten(input_shape=[28, 28, 1]),\n",
" keras.layers.Dense(50, activation=\"relu\"),\n", " keras.layers.Dense(50, activation=\"relu\"),\n",
" keras.layers.Dense(50, activation=\"relu\"),\n", " keras.layers.Dense(50, activation=\"relu\"),\n",
" keras.layers.Dense(10, activation=\"softmax\")\n", " keras.layers.Dense(10, activation=\"softmax\")\n",
@ -473,7 +538,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 28, "execution_count": 31,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -485,7 +550,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 29, "execution_count": 32,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -494,7 +559,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 30, "execution_count": 33,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -514,7 +579,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 31, "execution_count": 34,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -529,7 +594,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 32, "execution_count": 35,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -538,7 +603,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 33, "execution_count": 36,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -562,7 +627,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 34, "execution_count": 37,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -571,7 +636,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 35, "execution_count": 38,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -586,7 +651,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 36, "execution_count": 39,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -602,7 +667,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 37, "execution_count": 40,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -619,7 +684,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 38, "execution_count": 41,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -628,7 +693,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 39, "execution_count": 42,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -637,7 +702,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 40, "execution_count": 43,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -646,7 +711,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 41, "execution_count": 44,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -665,7 +730,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 42, "execution_count": 45,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -676,7 +741,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 43, "execution_count": 46,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -699,7 +764,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 44, "execution_count": 47,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -714,7 +779,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 45, "execution_count": 48,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -747,7 +812,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 46, "execution_count": 49,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -758,7 +823,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 47, "execution_count": 50,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -774,7 +839,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 48, "execution_count": 51,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -823,7 +888,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 49, "execution_count": 52,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -867,7 +932,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 50, "execution_count": 53,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -900,7 +965,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 51, "execution_count": 54,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -921,7 +986,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 52, "execution_count": 55,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -940,7 +1005,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 53, "execution_count": 56,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -950,7 +1015,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 54, "execution_count": 57,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -966,7 +1031,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 55, "execution_count": 58,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -994,7 +1059,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 56, "execution_count": 59,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1043,7 +1108,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 57, "execution_count": 60,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1057,7 +1122,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 58, "execution_count": 61,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -1081,7 +1146,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.8" "version": "3.7.3"
} }
}, },
"nbformat": 4, "nbformat": 4,