Remove transpose conv section, fix python 3.7->3.8, small tweaks
parent
9bd3b4ad9a
commit
a18cb82f34
|
@ -63,7 +63,7 @@
|
||||||
"source": [
|
"source": [
|
||||||
"import sys\n",
|
"import sys\n",
|
||||||
"\n",
|
"\n",
|
||||||
"assert sys.version_info >= (3, 7)"
|
"assert sys.version_info >= (3, 8)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -557,7 +557,7 @@
|
||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# extra code – this cells generates and saves Figure 14–9\n",
|
"# extra code – this cells shows what max pooling with stride = 2 looks like\n",
|
||||||
"\n",
|
"\n",
|
||||||
"import matplotlib as mpl\n",
|
"import matplotlib as mpl\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
@ -572,7 +572,6 @@
|
||||||
"ax2.set_title(\"Output\", fontsize=14)\n",
|
"ax2.set_title(\"Output\", fontsize=14)\n",
|
||||||
"ax2.imshow(output[0]) # plot the output for the 1st image\n",
|
"ax2.imshow(output[0]) # plot the output for the 1st image\n",
|
||||||
"ax2.axis(\"off\")\n",
|
"ax2.axis(\"off\")\n",
|
||||||
"save_fig(\"china_max_pooling\")\n",
|
|
||||||
"plt.show()"
|
"plt.show()"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -1436,21 +1435,6 @@
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 57,
|
"execution_count": 57,
|
||||||
"metadata": {
|
|
||||||
"id": "E0XZoWKjpKz_"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"def add_random_bounding_boxes(images, labels):\n",
|
|
||||||
" fake_bboxes = tf.random.uniform([tf.shape(images)[0], 4])\n",
|
|
||||||
" return images, (labels, fake_bboxes)\n",
|
|
||||||
"\n",
|
|
||||||
"fake_train_set = train_set.take(5).repeat(2).map(add_random_bounding_boxes)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 58,
|
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"colab": {
|
"colab": {
|
||||||
"base_uri": "https://localhost:8080/"
|
"base_uri": "https://localhost:8080/"
|
||||||
|
@ -1460,6 +1444,14 @@
|
||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
"# extra code – fits the model using random target bounding boxes (in real life\n",
|
||||||
|
"# you would need to create proper targets instead)\n",
|
||||||
|
"\n",
|
||||||
|
"def add_random_bounding_boxes(images, labels):\n",
|
||||||
|
" fake_bboxes = tf.random.uniform([tf.shape(images)[0], 4])\n",
|
||||||
|
" return images, (labels, fake_bboxes)\n",
|
||||||
|
"\n",
|
||||||
|
"fake_train_set = train_set.take(5).repeat(2).map(add_random_bounding_boxes)\n",
|
||||||
"model.fit(fake_train_set, epochs=2)"
|
"model.fit(fake_train_set, epochs=2)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -1474,7 +1466,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 59,
|
"execution_count": 58,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"id": "fgjxsrkLpKz_"
|
"id": "fgjxsrkLpKz_"
|
||||||
},
|
},
|
||||||
|
@ -1486,7 +1478,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 60,
|
"execution_count": 59,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"colab": {
|
"colab": {
|
||||||
"base_uri": "https://localhost:8080/",
|
"base_uri": "https://localhost:8080/",
|
||||||
|
@ -1579,7 +1571,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 61,
|
"execution_count": 60,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"colab": {
|
"colab": {
|
||||||
"base_uri": "https://localhost:8080/"
|
"base_uri": "https://localhost:8080/"
|
||||||
|
@ -1589,7 +1581,8 @@
|
||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"(X_train_full, y_train_full), (X_test, y_test) = tf.keras.datasets.mnist.load_data()\n",
|
"mnist = tf.keras.datasets.mnist.load_data()\n",
|
||||||
|
"(X_train_full, y_train_full), (X_test, y_test) = mnist\n",
|
||||||
"X_train_full = X_train_full / 255.\n",
|
"X_train_full = X_train_full / 255.\n",
|
||||||
"X_test = X_test / 255.\n",
|
"X_test = X_test / 255.\n",
|
||||||
"X_train, X_valid = X_train_full[:-5000], X_train_full[-5000:]\n",
|
"X_train, X_valid = X_train_full[:-5000], X_train_full[-5000:]\n",
|
||||||
|
@ -1602,7 +1595,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 62,
|
"execution_count": 61,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"colab": {
|
"colab": {
|
||||||
"base_uri": "https://localhost:8080/"
|
"base_uri": "https://localhost:8080/"
|
||||||
|
@ -1617,12 +1610,15 @@
|
||||||
"np.random.seed(42)\n",
|
"np.random.seed(42)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"model = tf.keras.Sequential([\n",
|
"model = tf.keras.Sequential([\n",
|
||||||
" tf.keras.layers.Conv2D(32, kernel_size=3, padding=\"same\", activation=\"relu\"),\n",
|
" tf.keras.layers.Conv2D(32, kernel_size=3, padding=\"same\",\n",
|
||||||
" tf.keras.layers.Conv2D(64, kernel_size=3, padding=\"same\", activation=\"relu\"),\n",
|
" activation=\"relu\", kernel_initializer=\"he_normal\"),\n",
|
||||||
|
" tf.keras.layers.Conv2D(64, kernel_size=3, padding=\"same\",\n",
|
||||||
|
" activation=\"relu\", kernel_initializer=\"he_normal\"),\n",
|
||||||
" tf.keras.layers.MaxPool2D(),\n",
|
" tf.keras.layers.MaxPool2D(),\n",
|
||||||
" tf.keras.layers.Flatten(),\n",
|
" tf.keras.layers.Flatten(),\n",
|
||||||
" tf.keras.layers.Dropout(0.25),\n",
|
" tf.keras.layers.Dropout(0.25),\n",
|
||||||
" tf.keras.layers.Dense(128, activation=\"relu\"),\n",
|
" tf.keras.layers.Dense(128, activation=\"relu\",\n",
|
||||||
|
" kernel_initializer=\"he_normal\"),\n",
|
||||||
" tf.keras.layers.Dropout(0.5),\n",
|
" tf.keras.layers.Dropout(0.5),\n",
|
||||||
" tf.keras.layers.Dense(10, activation=\"softmax\")\n",
|
" tf.keras.layers.Dense(10, activation=\"softmax\")\n",
|
||||||
"])\n",
|
"])\n",
|
||||||
|
|
Loading…
Reference in New Issue