Make notebooks 1 to 9 runnable in Colab without changes

main
Aurélien Geron 2019-11-05 22:26:52 +08:00
parent 7e35fdc3c4
commit a55720e9e4
9 changed files with 400 additions and 254 deletions

View File

@ -9,6 +9,17 @@
"_This is the code used to generate some of the figures in chapter 1._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/01_the_machine_learning_landscape.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -111,6 +122,21 @@
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# Download the data\n",
"DOWNLOAD_ROOT = \"https://raw.githubusercontent.com/ageron/handson-ml2/master/\"\n",
"os.makedirs(datapath, exist_ok=True)\n",
"for filename in (\"oecd_bli_2015.csv\", \"gdp_per_capita.csv\"):\n",
" print(\"Downloading\", filename)\n",
" url = DOWNLOAD_ROOT + \"datasets/lifesat/\" + filename\n",
" urllib.request.urlretrieve(url, datapath + filename)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Code example\n",
"import matplotlib.pyplot as plt\n",
@ -201,7 +227,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
@ -228,7 +254,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
@ -253,7 +279,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
@ -265,7 +291,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
@ -288,7 +314,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
@ -301,7 +327,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
@ -312,7 +338,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
@ -321,7 +347,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
@ -334,7 +360,7 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
@ -360,7 +386,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
@ -369,7 +395,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
@ -378,7 +404,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
@ -403,7 +429,7 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
@ -418,7 +444,7 @@
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
@ -435,7 +461,7 @@
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
@ -447,7 +473,7 @@
},
{
"cell_type": "code",
"execution_count": 22,
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
@ -467,7 +493,7 @@
},
{
"cell_type": "code",
"execution_count": 23,
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
@ -476,7 +502,7 @@
},
{
"cell_type": "code",
"execution_count": 24,
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
@ -485,7 +511,7 @@
},
{
"cell_type": "code",
"execution_count": 25,
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
@ -506,7 +532,7 @@
},
{
"cell_type": "code",
"execution_count": 26,
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
@ -543,7 +569,7 @@
},
{
"cell_type": "code",
"execution_count": 27,
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
@ -552,7 +578,7 @@
},
{
"cell_type": "code",
"execution_count": 28,
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
@ -561,7 +587,7 @@
},
{
"cell_type": "code",
"execution_count": 29,
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
@ -578,7 +604,7 @@
},
{
"cell_type": "code",
"execution_count": 30,
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
@ -610,7 +636,7 @@
},
{
"cell_type": "code",
"execution_count": 31,
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
@ -635,7 +661,7 @@
},
{
"cell_type": "code",
"execution_count": 32,
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
@ -644,7 +670,7 @@
},
{
"cell_type": "code",
"execution_count": 33,
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
@ -653,7 +679,7 @@
},
{
"cell_type": "code",
"execution_count": 34,
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
@ -685,7 +711,7 @@
},
{
"cell_type": "code",
"execution_count": 35,
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
@ -697,7 +723,7 @@
},
{
"cell_type": "code",
"execution_count": 36,
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
@ -708,7 +734,7 @@
},
{
"cell_type": "code",
"execution_count": 37,
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
@ -719,7 +745,7 @@
},
{
"cell_type": "code",
"execution_count": 38,
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
@ -758,7 +784,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
"version": "3.7.3"
},
"nav_menu": {},
"toc": {

View File

@ -11,6 +11,17 @@
"*This notebook contains all the sample code and solutions to the exercices in chapter 2.*"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/02_end_to_end_machine_learning_project.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -491,9 +502,25 @@
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"# Download the California image\n",
"images_path = os.path.join(PROJECT_ROOT_DIR, \"images\", \"end_to_end_project\")\n",
"os.makedirs(images_path, exist_ok=True)\n",
"DOWNLOAD_ROOT = \"https://raw.githubusercontent.com/ageron/handson-ml2/master/\"\n",
"filename = \"california.png\"\n",
"print(\"Downloading\", filename)\n",
"url = DOWNLOAD_ROOT + \"images/end_to_end_project/\" + filename\n",
"urllib.request.urlretrieve(url, os.path.join(images_path, filename))"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.image as mpimg\n",
"california_img=mpimg.imread(PROJECT_ROOT_DIR + '/images/end_to_end_project/california.png')\n",
"california_img=mpimg.imread(os.path.join(images_path, filename))\n",
"ax = housing.plot(kind=\"scatter\", x=\"longitude\", y=\"latitude\", figsize=(10,7),\n",
" s=housing['population']/100, label=\"Population\",\n",
" c=\"median_house_value\", cmap=plt.get_cmap(\"jet\"),\n",
@ -517,7 +544,7 @@
},
{
"cell_type": "code",
"execution_count": 37,
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
@ -526,7 +553,7 @@
},
{
"cell_type": "code",
"execution_count": 38,
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
@ -535,7 +562,7 @@
},
{
"cell_type": "code",
"execution_count": 39,
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
@ -550,7 +577,7 @@
},
{
"cell_type": "code",
"execution_count": 40,
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
@ -562,7 +589,7 @@
},
{
"cell_type": "code",
"execution_count": 41,
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
@ -573,7 +600,7 @@
},
{
"cell_type": "code",
"execution_count": 42,
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
@ -583,7 +610,7 @@
},
{
"cell_type": "code",
"execution_count": 43,
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
@ -595,7 +622,7 @@
},
{
"cell_type": "code",
"execution_count": 44,
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
@ -611,7 +638,7 @@
},
{
"cell_type": "code",
"execution_count": 45,
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
@ -621,7 +648,7 @@
},
{
"cell_type": "code",
"execution_count": 46,
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
@ -631,7 +658,7 @@
},
{
"cell_type": "code",
"execution_count": 47,
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
@ -640,7 +667,7 @@
},
{
"cell_type": "code",
"execution_count": 48,
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
@ -649,7 +676,7 @@
},
{
"cell_type": "code",
"execution_count": 49,
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
@ -659,7 +686,7 @@
},
{
"cell_type": "code",
"execution_count": 50,
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
@ -668,7 +695,7 @@
},
{
"cell_type": "code",
"execution_count": 51,
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
@ -685,7 +712,7 @@
},
{
"cell_type": "code",
"execution_count": 52,
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
@ -695,7 +722,7 @@
},
{
"cell_type": "code",
"execution_count": 53,
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
@ -704,7 +731,7 @@
},
{
"cell_type": "code",
"execution_count": 54,
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
@ -720,7 +747,7 @@
},
{
"cell_type": "code",
"execution_count": 55,
"execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
@ -736,7 +763,7 @@
},
{
"cell_type": "code",
"execution_count": 56,
"execution_count": 57,
"metadata": {},
"outputs": [],
"source": [
@ -745,7 +772,7 @@
},
{
"cell_type": "code",
"execution_count": 57,
"execution_count": 58,
"metadata": {},
"outputs": [],
"source": [
@ -755,7 +782,7 @@
},
{
"cell_type": "code",
"execution_count": 58,
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
@ -764,7 +791,7 @@
},
{
"cell_type": "code",
"execution_count": 59,
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
@ -773,7 +800,7 @@
},
{
"cell_type": "code",
"execution_count": 60,
"execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
@ -783,7 +810,7 @@
},
{
"cell_type": "code",
"execution_count": 61,
"execution_count": 62,
"metadata": {},
"outputs": [],
"source": [
@ -799,7 +826,7 @@
},
{
"cell_type": "code",
"execution_count": 62,
"execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
@ -809,7 +836,7 @@
},
{
"cell_type": "code",
"execution_count": 63,
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
@ -822,7 +849,7 @@
},
{
"cell_type": "code",
"execution_count": 64,
"execution_count": 65,
"metadata": {},
"outputs": [],
"source": [
@ -831,7 +858,7 @@
},
{
"cell_type": "code",
"execution_count": 65,
"execution_count": 66,
"metadata": {},
"outputs": [],
"source": [
@ -851,7 +878,7 @@
},
{
"cell_type": "code",
"execution_count": 66,
"execution_count": 67,
"metadata": {},
"outputs": [],
"source": [
@ -867,7 +894,7 @@
},
{
"cell_type": "code",
"execution_count": 67,
"execution_count": 68,
"metadata": {},
"outputs": [],
"source": [
@ -878,7 +905,7 @@
},
{
"cell_type": "code",
"execution_count": 68,
"execution_count": 69,
"metadata": {},
"outputs": [],
"source": [
@ -894,7 +921,7 @@
},
{
"cell_type": "code",
"execution_count": 69,
"execution_count": 70,
"metadata": {},
"outputs": [],
"source": [
@ -924,7 +951,7 @@
},
{
"cell_type": "code",
"execution_count": 70,
"execution_count": 71,
"metadata": {},
"outputs": [],
"source": [
@ -944,7 +971,7 @@
},
{
"cell_type": "code",
"execution_count": 71,
"execution_count": 72,
"metadata": {},
"outputs": [],
"source": [
@ -962,7 +989,7 @@
},
{
"cell_type": "code",
"execution_count": 72,
"execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
@ -971,7 +998,7 @@
},
{
"cell_type": "code",
"execution_count": 73,
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
@ -990,7 +1017,7 @@
},
{
"cell_type": "code",
"execution_count": 74,
"execution_count": 75,
"metadata": {},
"outputs": [],
"source": [
@ -999,7 +1026,7 @@
},
{
"cell_type": "code",
"execution_count": 75,
"execution_count": 76,
"metadata": {},
"outputs": [],
"source": [
@ -1015,7 +1042,7 @@
},
{
"cell_type": "code",
"execution_count": 76,
"execution_count": 77,
"metadata": {},
"outputs": [],
"source": [
@ -1040,7 +1067,7 @@
},
{
"cell_type": "code",
"execution_count": 77,
"execution_count": 78,
"metadata": {},
"outputs": [],
"source": [
@ -1062,7 +1089,7 @@
},
{
"cell_type": "code",
"execution_count": 78,
"execution_count": 79,
"metadata": {},
"outputs": [],
"source": [
@ -1076,7 +1103,7 @@
},
{
"cell_type": "code",
"execution_count": 79,
"execution_count": 80,
"metadata": {},
"outputs": [],
"source": [
@ -1093,7 +1120,7 @@
},
{
"cell_type": "code",
"execution_count": 80,
"execution_count": 81,
"metadata": {},
"outputs": [],
"source": [
@ -1109,7 +1136,7 @@
},
{
"cell_type": "code",
"execution_count": 81,
"execution_count": 82,
"metadata": {},
"outputs": [],
"source": [
@ -1121,7 +1148,7 @@
},
{
"cell_type": "code",
"execution_count": 82,
"execution_count": 83,
"metadata": {},
"outputs": [],
"source": [
@ -1142,7 +1169,7 @@
},
{
"cell_type": "code",
"execution_count": 83,
"execution_count": 84,
"metadata": {},
"outputs": [],
"source": [
@ -1151,7 +1178,7 @@
},
{
"cell_type": "code",
"execution_count": 84,
"execution_count": 85,
"metadata": {},
"outputs": [],
"source": [
@ -1160,7 +1187,7 @@
},
{
"cell_type": "code",
"execution_count": 85,
"execution_count": 86,
"metadata": {},
"outputs": [],
"source": [
@ -1174,7 +1201,7 @@
},
{
"cell_type": "code",
"execution_count": 86,
"execution_count": 87,
"metadata": {},
"outputs": [],
"source": [
@ -1186,7 +1213,7 @@
},
{
"cell_type": "code",
"execution_count": 87,
"execution_count": 88,
"metadata": {},
"outputs": [],
"source": [
@ -1198,7 +1225,7 @@
},
{
"cell_type": "code",
"execution_count": 88,
"execution_count": 89,
"metadata": {},
"outputs": [],
"source": [
@ -1217,7 +1244,7 @@
},
{
"cell_type": "code",
"execution_count": 89,
"execution_count": 90,
"metadata": {},
"outputs": [],
"source": [
@ -1230,7 +1257,7 @@
},
{
"cell_type": "code",
"execution_count": 90,
"execution_count": 91,
"metadata": {},
"outputs": [],
"source": [
@ -1244,7 +1271,7 @@
},
{
"cell_type": "code",
"execution_count": 91,
"execution_count": 92,
"metadata": {},
"outputs": [],
"source": [
@ -1263,7 +1290,7 @@
},
{
"cell_type": "code",
"execution_count": 92,
"execution_count": 93,
"metadata": {},
"outputs": [],
"source": [
@ -1275,7 +1302,7 @@
},
{
"cell_type": "code",
"execution_count": 93,
"execution_count": 94,
"metadata": {},
"outputs": [],
"source": [
@ -1287,7 +1314,7 @@
},
{
"cell_type": "code",
"execution_count": 94,
"execution_count": 95,
"metadata": {},
"outputs": [],
"source": [
@ -1301,7 +1328,7 @@
},
{
"cell_type": "code",
"execution_count": 95,
"execution_count": 96,
"metadata": {},
"outputs": [],
"source": [
@ -1311,7 +1338,7 @@
},
{
"cell_type": "code",
"execution_count": 96,
"execution_count": 97,
"metadata": {},
"outputs": [],
"source": [
@ -1327,7 +1354,7 @@
},
{
"cell_type": "code",
"execution_count": 97,
"execution_count": 98,
"metadata": {},
"outputs": [],
"source": [
@ -1357,7 +1384,7 @@
},
{
"cell_type": "code",
"execution_count": 98,
"execution_count": 99,
"metadata": {},
"outputs": [],
"source": [
@ -1366,7 +1393,7 @@
},
{
"cell_type": "code",
"execution_count": 99,
"execution_count": 100,
"metadata": {},
"outputs": [],
"source": [
@ -1382,7 +1409,7 @@
},
{
"cell_type": "code",
"execution_count": 100,
"execution_count": 101,
"metadata": {},
"outputs": [],
"source": [
@ -1393,7 +1420,7 @@
},
{
"cell_type": "code",
"execution_count": 101,
"execution_count": 102,
"metadata": {},
"outputs": [],
"source": [
@ -1402,7 +1429,7 @@
},
{
"cell_type": "code",
"execution_count": 102,
"execution_count": 103,
"metadata": {},
"outputs": [],
"source": [
@ -1422,7 +1449,7 @@
},
{
"cell_type": "code",
"execution_count": 103,
"execution_count": 104,
"metadata": {},
"outputs": [],
"source": [
@ -1433,7 +1460,7 @@
},
{
"cell_type": "code",
"execution_count": 104,
"execution_count": 105,
"metadata": {},
"outputs": [],
"source": [
@ -1443,7 +1470,7 @@
},
{
"cell_type": "code",
"execution_count": 105,
"execution_count": 106,
"metadata": {},
"outputs": [],
"source": [
@ -1457,7 +1484,7 @@
},
{
"cell_type": "code",
"execution_count": 106,
"execution_count": 107,
"metadata": {},
"outputs": [],
"source": [
@ -1475,7 +1502,7 @@
},
{
"cell_type": "code",
"execution_count": 107,
"execution_count": 108,
"metadata": {},
"outputs": [],
"source": [
@ -1491,7 +1518,7 @@
},
{
"cell_type": "code",
"execution_count": 108,
"execution_count": 109,
"metadata": {},
"outputs": [],
"source": [
@ -1513,7 +1540,7 @@
},
{
"cell_type": "code",
"execution_count": 109,
"execution_count": 110,
"metadata": {},
"outputs": [],
"source": [
@ -1533,7 +1560,7 @@
},
{
"cell_type": "code",
"execution_count": 110,
"execution_count": 111,
"metadata": {},
"outputs": [],
"source": [
@ -1558,7 +1585,7 @@
},
{
"cell_type": "code",
"execution_count": 111,
"execution_count": 112,
"metadata": {},
"outputs": [],
"source": [
@ -1580,7 +1607,7 @@
},
{
"cell_type": "code",
"execution_count": 112,
"execution_count": 113,
"metadata": {},
"outputs": [],
"source": [
@ -1589,7 +1616,7 @@
},
{
"cell_type": "code",
"execution_count": 113,
"execution_count": 114,
"metadata": {},
"outputs": [],
"source": [
@ -1608,7 +1635,7 @@
},
{
"cell_type": "code",
"execution_count": 114,
"execution_count": 115,
"metadata": {},
"outputs": [],
"source": [
@ -1646,7 +1673,7 @@
},
{
"cell_type": "code",
"execution_count": 115,
"execution_count": 116,
"metadata": {},
"outputs": [],
"source": [
@ -1672,7 +1699,7 @@
},
{
"cell_type": "code",
"execution_count": 116,
"execution_count": 117,
"metadata": {},
"outputs": [],
"source": [
@ -1690,7 +1717,7 @@
},
{
"cell_type": "code",
"execution_count": 117,
"execution_count": 118,
"metadata": {},
"outputs": [],
"source": [
@ -1720,7 +1747,7 @@
},
{
"cell_type": "code",
"execution_count": 118,
"execution_count": 119,
"metadata": {},
"outputs": [],
"source": [
@ -1753,7 +1780,7 @@
},
{
"cell_type": "code",
"execution_count": 119,
"execution_count": 120,
"metadata": {},
"outputs": [],
"source": [
@ -1771,7 +1798,7 @@
},
{
"cell_type": "code",
"execution_count": 120,
"execution_count": 121,
"metadata": {},
"outputs": [],
"source": [
@ -1794,7 +1821,7 @@
},
{
"cell_type": "code",
"execution_count": 121,
"execution_count": 122,
"metadata": {},
"outputs": [],
"source": [
@ -1819,7 +1846,7 @@
},
{
"cell_type": "code",
"execution_count": 122,
"execution_count": 123,
"metadata": {},
"outputs": [],
"source": [
@ -1858,7 +1885,7 @@
},
{
"cell_type": "code",
"execution_count": 123,
"execution_count": 124,
"metadata": {},
"outputs": [],
"source": [
@ -1894,7 +1921,7 @@
},
{
"cell_type": "code",
"execution_count": 124,
"execution_count": 125,
"metadata": {},
"outputs": [],
"source": [
@ -1910,7 +1937,7 @@
},
{
"cell_type": "code",
"execution_count": 125,
"execution_count": 126,
"metadata": {},
"outputs": [],
"source": [
@ -1920,7 +1947,7 @@
},
{
"cell_type": "code",
"execution_count": 126,
"execution_count": 127,
"metadata": {},
"outputs": [],
"source": [
@ -1936,7 +1963,7 @@
},
{
"cell_type": "code",
"execution_count": 127,
"execution_count": 128,
"metadata": {},
"outputs": [],
"source": [
@ -1952,7 +1979,7 @@
},
{
"cell_type": "code",
"execution_count": 128,
"execution_count": 129,
"metadata": {},
"outputs": [],
"source": [
@ -1964,7 +1991,7 @@
},
{
"cell_type": "code",
"execution_count": 129,
"execution_count": 130,
"metadata": {},
"outputs": [],
"source": [
@ -1980,7 +2007,7 @@
},
{
"cell_type": "code",
"execution_count": 130,
"execution_count": 131,
"metadata": {},
"outputs": [],
"source": [
@ -1996,7 +2023,7 @@
},
{
"cell_type": "code",
"execution_count": 131,
"execution_count": 132,
"metadata": {},
"outputs": [],
"source": [
@ -2026,7 +2053,7 @@
},
{
"cell_type": "code",
"execution_count": 132,
"execution_count": 133,
"metadata": {},
"outputs": [],
"source": [
@ -2039,7 +2066,7 @@
},
{
"cell_type": "code",
"execution_count": 133,
"execution_count": 134,
"metadata": {},
"outputs": [],
"source": [
@ -2055,7 +2082,7 @@
},
{
"cell_type": "code",
"execution_count": 134,
"execution_count": 135,
"metadata": {},
"outputs": [],
"source": [
@ -2089,7 +2116,7 @@
},
{
"cell_type": "code",
"execution_count": 135,
"execution_count": 136,
"metadata": {},
"outputs": [],
"source": [
@ -2105,7 +2132,7 @@
},
{
"cell_type": "code",
"execution_count": 136,
"execution_count": 137,
"metadata": {},
"outputs": [],
"source": [
@ -2143,7 +2170,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
"version": "3.7.3"
},
"nav_menu": {
"height": "279px",

View File

@ -9,6 +9,17 @@
"_This notebook contains all the sample code and solutions to the exercises in chapter 3._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/03_classification.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -2522,7 +2533,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
"version": "3.7.3"
},
"nav_menu": {},
"toc": {

View File

@ -14,6 +14,17 @@
"_This notebook contains all the sample code and solutions to the exercises in chapter 4._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/04_training_linear_models.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -1786,7 +1797,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
"version": "3.7.3"
},
"nav_menu": {},
"toc": {

View File

@ -9,6 +9,17 @@
"_This notebook contains all the sample code and solutions to the exercises in chapter 5._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/05_support_vector_machines.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -1823,7 +1834,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
"version": "3.7.3"
},
"nav_menu": {},
"toc": {

View File

@ -14,6 +14,17 @@
"_This notebook contains all the sample code and solutions to the exercises in chapter 6._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/06_decision_trees.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -722,7 +733,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
"version": "3.7.3"
},
"nav_menu": {
"height": "309px",

View File

@ -14,6 +14,17 @@
"_This notebook contains all the sample code and solutions to the exercises in chapter 7._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/07_ensemble_learning_and_random_forests.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -1383,7 +1394,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
"version": "3.7.3"
},
"nav_menu": {
"height": "252px",

View File

@ -9,6 +9,17 @@
"_This notebook contains all the sample code and solutions to the exercises in chapter 8._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/08_dimensionality_reduction.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -2253,7 +2264,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
"version": "3.7.3"
}
},
"nbformat": 4,

View File

@ -9,6 +9,17 @@
"_This notebook contains all the sample code in chapter 9._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/ageron/handson-ml2/blob/master/09_unsupervised_learning.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -1439,9 +1450,14 @@
"metadata": {},
"outputs": [],
"source": [
"from matplotlib.image import imread\n",
"image = imread(os.path.join(\"images\",\"unsupervised_learning\",\"ladybug.png\"))\n",
"image.shape"
"# Download the ladybug image\n",
"images_path = os.path.join(PROJECT_ROOT_DIR, \"images\", \"unsupervised_learning\")\n",
"os.makedirs(images_path, exist_ok=True)\n",
"DOWNLOAD_ROOT = \"https://raw.githubusercontent.com/ageron/handson-ml2/master/\"\n",
"filename = \"ladybug.png\"\n",
"print(\"Downloading\", filename)\n",
"url = DOWNLOAD_ROOT + \"images/unsupervised_learning/\" + filename\n",
"urllib.request.urlretrieve(url, os.path.join(images_path, filename))"
]
},
{
@ -1449,6 +1465,17 @@
"execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
"from matplotlib.image import imread\n",
"image = imread(os.path.join(images_path, filename))\n",
"image.shape"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"X = image.reshape(-1, 3)\n",
"kmeans = KMeans(n_clusters=8, random_state=42).fit(X)\n",
@ -1458,7 +1485,7 @@
},
{
"cell_type": "code",
"execution_count": 74,
"execution_count": 75,
"metadata": {},
"outputs": [],
"source": [
@ -1472,7 +1499,7 @@
},
{
"cell_type": "code",
"execution_count": 75,
"execution_count": 76,
"metadata": {},
"outputs": [],
"source": [
@ -1510,7 +1537,7 @@
},
{
"cell_type": "code",
"execution_count": 76,
"execution_count": 77,
"metadata": {},
"outputs": [],
"source": [
@ -1519,7 +1546,7 @@
},
{
"cell_type": "code",
"execution_count": 77,
"execution_count": 78,
"metadata": {},
"outputs": [],
"source": [
@ -1535,7 +1562,7 @@
},
{
"cell_type": "code",
"execution_count": 78,
"execution_count": 79,
"metadata": {},
"outputs": [],
"source": [
@ -1544,7 +1571,7 @@
},
{
"cell_type": "code",
"execution_count": 79,
"execution_count": 80,
"metadata": {},
"outputs": [],
"source": [
@ -1560,7 +1587,7 @@
},
{
"cell_type": "code",
"execution_count": 80,
"execution_count": 81,
"metadata": {},
"outputs": [],
"source": [
@ -1569,7 +1596,7 @@
},
{
"cell_type": "code",
"execution_count": 81,
"execution_count": 82,
"metadata": {},
"outputs": [],
"source": [
@ -1579,7 +1606,7 @@
},
{
"cell_type": "code",
"execution_count": 82,
"execution_count": 83,
"metadata": {},
"outputs": [],
"source": [
@ -1595,7 +1622,7 @@
},
{
"cell_type": "code",
"execution_count": 83,
"execution_count": 84,
"metadata": {},
"outputs": [],
"source": [
@ -1604,7 +1631,7 @@
},
{
"cell_type": "code",
"execution_count": 84,
"execution_count": 85,
"metadata": {},
"outputs": [],
"source": [
@ -1617,7 +1644,7 @@
},
{
"cell_type": "code",
"execution_count": 85,
"execution_count": 86,
"metadata": {},
"outputs": [],
"source": [
@ -1626,7 +1653,7 @@
},
{
"cell_type": "code",
"execution_count": 86,
"execution_count": 87,
"metadata": {},
"outputs": [],
"source": [
@ -1642,7 +1669,7 @@
},
{
"cell_type": "code",
"execution_count": 87,
"execution_count": 88,
"metadata": {},
"outputs": [],
"source": [
@ -1651,7 +1678,7 @@
},
{
"cell_type": "code",
"execution_count": 88,
"execution_count": 89,
"metadata": {},
"outputs": [],
"source": [
@ -1662,7 +1689,7 @@
},
{
"cell_type": "code",
"execution_count": 89,
"execution_count": 90,
"metadata": {},
"outputs": [],
"source": [
@ -1671,7 +1698,7 @@
},
{
"cell_type": "code",
"execution_count": 90,
"execution_count": 91,
"metadata": {
"scrolled": false
},
@ -1710,7 +1737,7 @@
},
{
"cell_type": "code",
"execution_count": 91,
"execution_count": 92,
"metadata": {},
"outputs": [],
"source": [
@ -1719,7 +1746,7 @@
},
{
"cell_type": "code",
"execution_count": 92,
"execution_count": 93,
"metadata": {},
"outputs": [],
"source": [
@ -1737,7 +1764,7 @@
},
{
"cell_type": "code",
"execution_count": 93,
"execution_count": 94,
"metadata": {},
"outputs": [],
"source": [
@ -1746,7 +1773,7 @@
},
{
"cell_type": "code",
"execution_count": 94,
"execution_count": 95,
"metadata": {},
"outputs": [],
"source": [
@ -1765,7 +1792,7 @@
},
{
"cell_type": "code",
"execution_count": 95,
"execution_count": 96,
"metadata": {},
"outputs": [],
"source": [
@ -1781,7 +1808,7 @@
},
{
"cell_type": "code",
"execution_count": 96,
"execution_count": 97,
"metadata": {},
"outputs": [],
"source": [
@ -1802,7 +1829,7 @@
},
{
"cell_type": "code",
"execution_count": 97,
"execution_count": 98,
"metadata": {},
"outputs": [],
"source": [
@ -1827,7 +1854,7 @@
},
{
"cell_type": "code",
"execution_count": 98,
"execution_count": 99,
"metadata": {},
"outputs": [],
"source": [
@ -1838,7 +1865,7 @@
},
{
"cell_type": "code",
"execution_count": 99,
"execution_count": 100,
"metadata": {},
"outputs": [],
"source": [
@ -1848,7 +1875,7 @@
},
{
"cell_type": "code",
"execution_count": 100,
"execution_count": 101,
"metadata": {},
"outputs": [],
"source": [
@ -1864,7 +1891,7 @@
},
{
"cell_type": "code",
"execution_count": 101,
"execution_count": 102,
"metadata": {},
"outputs": [],
"source": [
@ -1881,7 +1908,7 @@
},
{
"cell_type": "code",
"execution_count": 102,
"execution_count": 103,
"metadata": {},
"outputs": [],
"source": [
@ -1892,7 +1919,7 @@
},
{
"cell_type": "code",
"execution_count": 103,
"execution_count": 104,
"metadata": {},
"outputs": [],
"source": [
@ -1902,7 +1929,7 @@
},
{
"cell_type": "code",
"execution_count": 104,
"execution_count": 105,
"metadata": {},
"outputs": [],
"source": [
@ -1925,7 +1952,7 @@
},
{
"cell_type": "code",
"execution_count": 105,
"execution_count": 106,
"metadata": {},
"outputs": [],
"source": [
@ -1950,7 +1977,7 @@
},
{
"cell_type": "code",
"execution_count": 106,
"execution_count": 107,
"metadata": {},
"outputs": [],
"source": [
@ -1959,7 +1986,7 @@
},
{
"cell_type": "code",
"execution_count": 107,
"execution_count": 108,
"metadata": {},
"outputs": [],
"source": [
@ -1968,7 +1995,7 @@
},
{
"cell_type": "code",
"execution_count": 108,
"execution_count": 109,
"metadata": {},
"outputs": [],
"source": [
@ -1977,7 +2004,7 @@
},
{
"cell_type": "code",
"execution_count": 109,
"execution_count": 110,
"metadata": {},
"outputs": [],
"source": [
@ -1987,7 +2014,7 @@
},
{
"cell_type": "code",
"execution_count": 110,
"execution_count": 111,
"metadata": {},
"outputs": [],
"source": [
@ -1996,7 +2023,7 @@
},
{
"cell_type": "code",
"execution_count": 111,
"execution_count": 112,
"metadata": {},
"outputs": [],
"source": [
@ -2005,7 +2032,7 @@
},
{
"cell_type": "code",
"execution_count": 112,
"execution_count": 113,
"metadata": {},
"outputs": [],
"source": [
@ -2014,7 +2041,7 @@
},
{
"cell_type": "code",
"execution_count": 113,
"execution_count": 114,
"metadata": {},
"outputs": [],
"source": [
@ -2023,7 +2050,7 @@
},
{
"cell_type": "code",
"execution_count": 114,
"execution_count": 115,
"metadata": {},
"outputs": [],
"source": [
@ -2032,7 +2059,7 @@
},
{
"cell_type": "code",
"execution_count": 115,
"execution_count": 116,
"metadata": {},
"outputs": [],
"source": [
@ -2042,7 +2069,7 @@
},
{
"cell_type": "code",
"execution_count": 116,
"execution_count": 117,
"metadata": {},
"outputs": [],
"source": [
@ -2075,7 +2102,7 @@
},
{
"cell_type": "code",
"execution_count": 117,
"execution_count": 118,
"metadata": {},
"outputs": [],
"source": [
@ -2093,7 +2120,7 @@
},
{
"cell_type": "code",
"execution_count": 118,
"execution_count": 119,
"metadata": {},
"outputs": [],
"source": [
@ -2102,7 +2129,7 @@
},
{
"cell_type": "code",
"execution_count": 119,
"execution_count": 120,
"metadata": {},
"outputs": [],
"source": [
@ -2111,7 +2138,7 @@
},
{
"cell_type": "code",
"execution_count": 120,
"execution_count": 121,
"metadata": {},
"outputs": [],
"source": [
@ -2121,7 +2148,7 @@
},
{
"cell_type": "code",
"execution_count": 121,
"execution_count": 122,
"metadata": {},
"outputs": [],
"source": [
@ -2131,7 +2158,7 @@
},
{
"cell_type": "code",
"execution_count": 122,
"execution_count": 123,
"metadata": {},
"outputs": [],
"source": [
@ -2140,7 +2167,7 @@
},
{
"cell_type": "code",
"execution_count": 123,
"execution_count": 124,
"metadata": {},
"outputs": [],
"source": [
@ -2153,7 +2180,7 @@
},
{
"cell_type": "code",
"execution_count": 124,
"execution_count": 125,
"metadata": {},
"outputs": [],
"source": [
@ -2179,7 +2206,7 @@
},
{
"cell_type": "code",
"execution_count": 125,
"execution_count": 126,
"metadata": {},
"outputs": [],
"source": [
@ -2188,7 +2215,7 @@
},
{
"cell_type": "code",
"execution_count": 126,
"execution_count": 127,
"metadata": {},
"outputs": [],
"source": [
@ -2198,7 +2225,7 @@
},
{
"cell_type": "code",
"execution_count": 127,
"execution_count": 128,
"metadata": {},
"outputs": [],
"source": [
@ -2208,7 +2235,7 @@
},
{
"cell_type": "code",
"execution_count": 128,
"execution_count": 129,
"metadata": {},
"outputs": [],
"source": [
@ -2217,7 +2244,7 @@
},
{
"cell_type": "code",
"execution_count": 129,
"execution_count": 130,
"metadata": {},
"outputs": [],
"source": [
@ -2239,7 +2266,7 @@
},
{
"cell_type": "code",
"execution_count": 130,
"execution_count": 131,
"metadata": {},
"outputs": [],
"source": [
@ -2263,7 +2290,7 @@
},
{
"cell_type": "code",
"execution_count": 131,
"execution_count": 132,
"metadata": {},
"outputs": [],
"source": [
@ -2272,7 +2299,7 @@
},
{
"cell_type": "code",
"execution_count": 132,
"execution_count": 133,
"metadata": {},
"outputs": [],
"source": [
@ -2282,7 +2309,7 @@
},
{
"cell_type": "code",
"execution_count": 133,
"execution_count": 134,
"metadata": {},
"outputs": [],
"source": [
@ -2293,7 +2320,7 @@
},
{
"cell_type": "code",
"execution_count": 134,
"execution_count": 135,
"metadata": {},
"outputs": [],
"source": [
@ -2302,7 +2329,7 @@
},
{
"cell_type": "code",
"execution_count": 135,
"execution_count": 136,
"metadata": {
"scrolled": true
},
@ -2320,7 +2347,7 @@
},
{
"cell_type": "code",
"execution_count": 136,
"execution_count": 137,
"metadata": {},
"outputs": [],
"source": [
@ -2341,7 +2368,7 @@
},
{
"cell_type": "code",
"execution_count": 137,
"execution_count": 138,
"metadata": {},
"outputs": [],
"source": [
@ -2350,7 +2377,7 @@
},
{
"cell_type": "code",
"execution_count": 138,
"execution_count": 139,
"metadata": {},
"outputs": [],
"source": [
@ -2367,7 +2394,7 @@
},
{
"cell_type": "code",
"execution_count": 139,
"execution_count": 140,
"metadata": {},
"outputs": [],
"source": [
@ -2376,7 +2403,7 @@
},
{
"cell_type": "code",
"execution_count": 140,
"execution_count": 141,
"metadata": {},
"outputs": [],
"source": [
@ -2385,7 +2412,7 @@
},
{
"cell_type": "code",
"execution_count": 141,
"execution_count": 142,
"metadata": {},
"outputs": [],
"source": [
@ -2401,7 +2428,7 @@
},
{
"cell_type": "code",
"execution_count": 142,
"execution_count": 143,
"metadata": {},
"outputs": [],
"source": [
@ -2417,7 +2444,7 @@
},
{
"cell_type": "code",
"execution_count": 143,
"execution_count": 144,
"metadata": {},
"outputs": [],
"source": [
@ -2433,7 +2460,7 @@
},
{
"cell_type": "code",
"execution_count": 144,
"execution_count": 145,
"metadata": {},
"outputs": [],
"source": [
@ -2442,7 +2469,7 @@
},
{
"cell_type": "code",
"execution_count": 145,
"execution_count": 146,
"metadata": {},
"outputs": [],
"source": [
@ -2458,7 +2485,7 @@
},
{
"cell_type": "code",
"execution_count": 146,
"execution_count": 147,
"metadata": {},
"outputs": [],
"source": [
@ -2468,7 +2495,7 @@
},
{
"cell_type": "code",
"execution_count": 147,
"execution_count": 148,
"metadata": {},
"outputs": [],
"source": [
@ -2491,7 +2518,7 @@
},
{
"cell_type": "code",
"execution_count": 148,
"execution_count": 149,
"metadata": {},
"outputs": [],
"source": [
@ -2507,7 +2534,7 @@
},
{
"cell_type": "code",
"execution_count": 149,
"execution_count": 150,
"metadata": {},
"outputs": [],
"source": [
@ -2530,7 +2557,7 @@
},
{
"cell_type": "code",
"execution_count": 150,
"execution_count": 151,
"metadata": {},
"outputs": [],
"source": [
@ -2569,7 +2596,7 @@
},
{
"cell_type": "code",
"execution_count": 151,
"execution_count": 152,
"metadata": {},
"outputs": [],
"source": [
@ -2594,7 +2621,7 @@
},
{
"cell_type": "code",
"execution_count": 152,
"execution_count": 153,
"metadata": {},
"outputs": [],
"source": [
@ -2610,7 +2637,7 @@
},
{
"cell_type": "code",
"execution_count": 153,
"execution_count": 154,
"metadata": {},
"outputs": [],
"source": [
@ -2628,7 +2655,7 @@
},
{
"cell_type": "code",
"execution_count": 154,
"execution_count": 155,
"metadata": {},
"outputs": [],
"source": [
@ -2640,7 +2667,7 @@
},
{
"cell_type": "code",
"execution_count": 155,
"execution_count": 156,
"metadata": {},
"outputs": [],
"source": [
@ -2665,7 +2692,7 @@
},
{
"cell_type": "code",
"execution_count": 156,
"execution_count": 157,
"metadata": {},
"outputs": [],
"source": [
@ -2676,7 +2703,7 @@
},
{
"cell_type": "code",
"execution_count": 157,
"execution_count": 158,
"metadata": {},
"outputs": [],
"source": [
@ -2716,7 +2743,7 @@
},
{
"cell_type": "code",
"execution_count": 158,
"execution_count": 159,
"metadata": {},
"outputs": [],
"source": [
@ -2725,7 +2752,7 @@
},
{
"cell_type": "code",
"execution_count": 159,
"execution_count": 160,
"metadata": {},
"outputs": [],
"source": [
@ -2741,7 +2768,7 @@
},
{
"cell_type": "code",
"execution_count": 160,
"execution_count": 161,
"metadata": {},
"outputs": [],
"source": [
@ -2758,7 +2785,7 @@
},
{
"cell_type": "code",
"execution_count": 161,
"execution_count": 162,
"metadata": {},
"outputs": [],
"source": [
@ -2767,7 +2794,7 @@
},
{
"cell_type": "code",
"execution_count": 162,
"execution_count": 163,
"metadata": {},
"outputs": [],
"source": [
@ -2790,7 +2817,7 @@
},
{
"cell_type": "code",
"execution_count": 163,
"execution_count": 164,
"metadata": {},
"outputs": [],
"source": [
@ -2800,7 +2827,7 @@
},
{
"cell_type": "code",
"execution_count": 164,
"execution_count": 165,
"metadata": {},
"outputs": [],
"source": [
@ -2810,7 +2837,7 @@
},
{
"cell_type": "code",
"execution_count": 165,
"execution_count": 166,
"metadata": {},
"outputs": [],
"source": [
@ -2841,7 +2868,7 @@
},
{
"cell_type": "code",
"execution_count": 166,
"execution_count": 167,
"metadata": {},
"outputs": [],
"source": [
@ -2860,7 +2887,7 @@
},
{
"cell_type": "code",
"execution_count": 167,
"execution_count": 168,
"metadata": {},
"outputs": [],
"source": [
@ -2869,7 +2896,7 @@
},
{
"cell_type": "code",
"execution_count": 168,
"execution_count": 169,
"metadata": {},
"outputs": [],
"source": [
@ -2892,7 +2919,7 @@
},
{
"cell_type": "code",
"execution_count": 169,
"execution_count": 170,
"metadata": {},
"outputs": [],
"source": [
@ -2901,7 +2928,7 @@
},
{
"cell_type": "code",
"execution_count": 170,
"execution_count": 171,
"metadata": {},
"outputs": [],
"source": [
@ -2918,7 +2945,7 @@
},
{
"cell_type": "code",
"execution_count": 171,
"execution_count": 172,
"metadata": {},
"outputs": [],
"source": [
@ -2927,7 +2954,7 @@
},
{
"cell_type": "code",
"execution_count": 172,
"execution_count": 173,
"metadata": {},
"outputs": [],
"source": [
@ -2938,7 +2965,7 @@
},
{
"cell_type": "code",
"execution_count": 173,
"execution_count": 174,
"metadata": {},
"outputs": [],
"source": [
@ -2953,7 +2980,7 @@
},
{
"cell_type": "code",
"execution_count": 174,
"execution_count": 175,
"metadata": {},
"outputs": [],
"source": [
@ -2962,7 +2989,7 @@
},
{
"cell_type": "code",
"execution_count": 175,
"execution_count": 176,
"metadata": {},
"outputs": [],
"source": [
@ -2971,7 +2998,7 @@
},
{
"cell_type": "code",
"execution_count": 176,
"execution_count": 177,
"metadata": {},
"outputs": [],
"source": [
@ -2998,7 +3025,7 @@
},
{
"cell_type": "code",
"execution_count": 177,
"execution_count": 178,
"metadata": {},
"outputs": [],
"source": [
@ -3007,7 +3034,7 @@
},
{
"cell_type": "code",
"execution_count": 178,
"execution_count": 179,
"metadata": {
"scrolled": true
},
@ -3019,7 +3046,7 @@
},
{
"cell_type": "code",
"execution_count": 179,
"execution_count": 180,
"metadata": {},
"outputs": [],
"source": [
@ -3053,7 +3080,7 @@
},
{
"cell_type": "code",
"execution_count": 180,
"execution_count": 181,
"metadata": {},
"outputs": [],
"source": [
@ -3062,7 +3089,7 @@
},
{
"cell_type": "code",
"execution_count": 181,
"execution_count": 182,
"metadata": {},
"outputs": [],
"source": [
@ -3075,7 +3102,7 @@
},
{
"cell_type": "code",
"execution_count": 182,
"execution_count": 183,
"metadata": {},
"outputs": [],
"source": [
@ -3163,7 +3190,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
"version": "3.7.3"
}
},
"nbformat": 4,