diff --git a/tools_numpy.ipynb b/tools_numpy.ipynb index 7b5c22e..3aaa689 100644 --- a/tools_numpy.ipynb +++ b/tools_numpy.ipynb @@ -36,7 +36,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -59,7 +59,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -75,7 +75,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -100,7 +100,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -110,7 +110,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -119,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -128,7 +128,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -145,7 +145,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -162,7 +162,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -181,7 +181,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -198,7 +198,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -215,7 +215,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": { "scrolled": true }, @@ -234,7 +234,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -251,7 +251,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": { "scrolled": true }, @@ -269,7 +269,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -285,7 +285,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -301,7 +301,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -320,7 +320,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -338,7 +338,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -354,7 +354,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -370,7 +370,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -404,12 +404,12 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "def my_function(z, y, x):\n", - " return x * y + z\n", + " return x + 10 * y + 100 * z\n", "\n", "np.fromfunction(my_function, (3, 2, 10))" ] @@ -418,7 +418,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "NumPy first creates three `ndarrays` (one per dimension), each of shape `(2, 10)`. Each array has values equal to the coordinate along a specific axis. For example, all elements in the `z` array are equal to their z-coordinate:\n", + "NumPy first creates three `ndarrays` (one per dimension), each of shape `(3, 2, 10)`. Each array has values equal to the coordinate along a specific axis. For example, all elements in the `z` array are equal to their z-coordinate:\n", "\n", " [[[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]\n", @@ -429,7 +429,7 @@ " [[ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n", " [ 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]]\n", "\n", - "So the terms x, y and z in the expression `x * y + z` above are in fact `ndarray`s (we will discuss arithmetic operations on arrays below). The point is that the function `my_function` is only called *once*, instead of once per element. This makes initialization very efficient." + "So the terms `x`, `y` and `z` in the expression `x + 10 * y + 100 * z` above are in fact `ndarray`s (we will discuss arithmetic operations on arrays below). The point is that the function `my_function` is only called *once*, instead of once per element. This makes initialization very efficient." ] }, {