diff --git a/16_nlp_with_rnns_and_attention.ipynb b/16_nlp_with_rnns_and_attention.ipynb index 240cd52..7e8afa7 100644 --- a/16_nlp_with_rnns_and_attention.ipynb +++ b/16_nlp_with_rnns_and_attention.ipynb @@ -367,7 +367,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "**Warning**: the `predict_classes()` method is deprecated. Instead, we must use `np.argmax(model.predict(X_new), axis=-1)`." + "**Warning**: the `predict_classes()` method is deprecated. Instead, we must use `np.argmax(model(X_new), axis=-1)`." ] }, { @@ -378,7 +378,7 @@ "source": [ "X_new = preprocess([\"How are yo\"])\n", "#Y_pred = model.predict_classes(X_new)\n", - "Y_pred = np.argmax(model.predict(X_new), axis=-1)\n", + "Y_pred = np.argmax(model(X_new), axis=-1)\n", "tokenizer.sequences_to_texts(Y_pred + 1)[0][-1] # 1st sentence, last char" ] }, @@ -401,7 +401,7 @@ "source": [ "def next_char(text, temperature=1):\n", " X_new = preprocess([text])\n", - " y_proba = model.predict(X_new)[0, -1:, :]\n", + " y_proba = model(X_new)[0, -1:, :]\n", " rescaled_logits = tf.math.log(y_proba) / temperature\n", " char_id = tf.random.categorical(rescaled_logits, num_samples=1) + 1\n", " return tokenizer.sequences_to_texts(char_id.numpy())[0]" @@ -512,6 +512,13 @@ "dataset = dataset.prefetch(1)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note**: once again, I commented out `recurrent_dropout=0.2` (compared to the book) so you can get GPU acceleration (if you have one)." + ] + }, { "cell_type": "code", "execution_count": 31, @@ -520,10 +527,12 @@ "source": [ "model = keras.models.Sequential([\n", " keras.layers.GRU(128, return_sequences=True, stateful=True,\n", - " dropout=0.2, recurrent_dropout=0.2,\n", + " #dropout=0.2, recurrent_dropout=0.2,\n", + " dropout=0.2,\n", " batch_input_shape=[batch_size, None, max_id]),\n", " keras.layers.GRU(128, return_sequences=True, stateful=True,\n", - " dropout=0.2, recurrent_dropout=0.2),\n", + " #dropout=0.2, recurrent_dropout=0.2),\n", + " dropout=0.2),\n", " keras.layers.TimeDistributed(keras.layers.Dense(max_id,\n", " activation=\"softmax\"))\n", "])"