Create image directory and check for sklearn >= 0.20 and TensorFlow >= 2.0-preview
parent
6b8dff91d0
commit
b546b743be
|
@ -25,7 +25,7 @@
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead)."
|
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -38,6 +38,10 @@
|
||||||
"import sys\n",
|
"import sys\n",
|
||||||
"assert sys.version_info >= (3, 5)\n",
|
"assert sys.version_info >= (3, 5)\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
"# Scikit-Learn ≥0.20 is required\n",
|
||||||
|
"import sklearn\n",
|
||||||
|
"assert sklearn.__version__ >= \"0.20\"\n",
|
||||||
|
"\n",
|
||||||
"# Common imports\n",
|
"# Common imports\n",
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"import os\n",
|
"import os\n",
|
||||||
|
@ -56,32 +60,15 @@
|
||||||
"# Where to save the figures\n",
|
"# Where to save the figures\n",
|
||||||
"PROJECT_ROOT_DIR = \".\"\n",
|
"PROJECT_ROOT_DIR = \".\"\n",
|
||||||
"CHAPTER_ID = \"decision_trees\"\n",
|
"CHAPTER_ID = \"decision_trees\"\n",
|
||||||
|
"IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID)\n",
|
||||||
|
"os.makedirs(IMAGES_PATH, exist_ok=True)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"def image_path(fig_id):\n",
|
"def save_fig(fig_id, tight_layout=True, fig_extension=\"png\", resolution=300):\n",
|
||||||
" return os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id)\n",
|
" path = os.path.join(IMAGES_PATH, fig_id + \".\" + fig_extension)\n",
|
||||||
"\n",
|
|
||||||
"def save_fig(fig_id, tight_layout=True):\n",
|
|
||||||
" print(\"Saving figure\", fig_id)\n",
|
" print(\"Saving figure\", fig_id)\n",
|
||||||
" if tight_layout:\n",
|
" if tight_layout:\n",
|
||||||
" plt.tight_layout()\n",
|
" plt.tight_layout()\n",
|
||||||
" plt.savefig(image_path(fig_id) + \".png\", format='png', dpi=300)"
|
" plt.savefig(path, format=fig_extension, dpi=resolution)"
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"This notebook assumes you have installed Scikit-Learn ≥0.20."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 2,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import sklearn\n",
|
|
||||||
"assert sklearn.__version__ >= \"0.20\""
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -93,7 +80,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": 2,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -110,25 +97,28 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 3,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
"from graphviz import Source\n",
|
||||||
"from sklearn.tree import export_graphviz\n",
|
"from sklearn.tree import export_graphviz\n",
|
||||||
"\n",
|
"\n",
|
||||||
"export_graphviz(\n",
|
"export_graphviz(\n",
|
||||||
" tree_clf,\n",
|
" tree_clf,\n",
|
||||||
" out_file=image_path(\"iris_tree.dot\"),\n",
|
" out_file=os.path.join(IMAGES_PATH, \"iris_tree.dot\"),\n",
|
||||||
" feature_names=iris.feature_names[2:],\n",
|
" feature_names=iris.feature_names[2:],\n",
|
||||||
" class_names=iris.target_names,\n",
|
" class_names=iris.target_names,\n",
|
||||||
" rounded=True,\n",
|
" rounded=True,\n",
|
||||||
" filled=True\n",
|
" filled=True\n",
|
||||||
" )"
|
" )\n",
|
||||||
|
"\n",
|
||||||
|
"Source.from_file(os.path.join(IMAGES_PATH, \"iris_tree.dot\"))"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 5,
|
"execution_count": 4,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -182,7 +172,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 6,
|
"execution_count": 5,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -191,7 +181,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 7,
|
"execution_count": 6,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -207,7 +197,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 8,
|
"execution_count": 7,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -216,7 +206,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 9,
|
"execution_count": 8,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -230,7 +220,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 10,
|
"execution_count": 9,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -247,7 +237,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 11,
|
"execution_count": 10,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -273,7 +263,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 12,
|
"execution_count": 11,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -292,7 +282,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 13,
|
"execution_count": 12,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -328,7 +318,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 14,
|
"execution_count": 13,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -342,7 +332,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 15,
|
"execution_count": 14,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -354,7 +344,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 16,
|
"execution_count": 15,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -401,19 +391,28 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 17,
|
"execution_count": 16,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"export_graphviz(\n",
|
"export_graphviz(\n",
|
||||||
" tree_reg1,\n",
|
" tree_reg1,\n",
|
||||||
" out_file=image_path(\"regression_tree.dot\"),\n",
|
" out_file=os.path.join(IMAGES_PATH, \"regression_tree.dot\"),\n",
|
||||||
" feature_names=[\"x1\"],\n",
|
" feature_names=[\"x1\"],\n",
|
||||||
" rounded=True,\n",
|
" rounded=True,\n",
|
||||||
" filled=True\n",
|
" filled=True\n",
|
||||||
" )"
|
" )"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 17,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"Source.from_file(os.path.join(IMAGES_PATH, \"regression_tree.dot\"))"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 18,
|
"execution_count": 18,
|
||||||
|
|
|
@ -25,7 +25,7 @@
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead)."
|
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -38,6 +38,10 @@
|
||||||
"import sys\n",
|
"import sys\n",
|
||||||
"assert sys.version_info >= (3, 5)\n",
|
"assert sys.version_info >= (3, 5)\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
"# Scikit-Learn ≥0.20 is required\n",
|
||||||
|
"import sklearn\n",
|
||||||
|
"assert sklearn.__version__ >= \"0.20\"\n",
|
||||||
|
"\n",
|
||||||
"# Common imports\n",
|
"# Common imports\n",
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"import os\n",
|
"import os\n",
|
||||||
|
@ -56,32 +60,15 @@
|
||||||
"# Where to save the figures\n",
|
"# Where to save the figures\n",
|
||||||
"PROJECT_ROOT_DIR = \".\"\n",
|
"PROJECT_ROOT_DIR = \".\"\n",
|
||||||
"CHAPTER_ID = \"ensembles\"\n",
|
"CHAPTER_ID = \"ensembles\"\n",
|
||||||
|
"IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID)\n",
|
||||||
|
"os.makedirs(IMAGES_PATH, exist_ok=True)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"def image_path(fig_id):\n",
|
"def save_fig(fig_id, tight_layout=True, fig_extension=\"png\", resolution=300):\n",
|
||||||
" return os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id)\n",
|
" path = os.path.join(IMAGES_PATH, fig_id + \".\" + fig_extension)\n",
|
||||||
"\n",
|
|
||||||
"def save_fig(fig_id, tight_layout=True):\n",
|
|
||||||
" print(\"Saving figure\", fig_id)\n",
|
" print(\"Saving figure\", fig_id)\n",
|
||||||
" if tight_layout:\n",
|
" if tight_layout:\n",
|
||||||
" plt.tight_layout()\n",
|
" plt.tight_layout()\n",
|
||||||
" plt.savefig(image_path(fig_id) + \".png\", format='png', dpi=300)"
|
" plt.savefig(path, format=fig_extension, dpi=resolution)"
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"This notebook assumes you have installed Scikit-Learn ≥0.20."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 2,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import sklearn\n",
|
|
||||||
"assert sklearn.__version__ >= \"0.20\""
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|
|
@ -20,7 +20,7 @@
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead)."
|
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -33,6 +33,10 @@
|
||||||
"import sys\n",
|
"import sys\n",
|
||||||
"assert sys.version_info >= (3, 5)\n",
|
"assert sys.version_info >= (3, 5)\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
"# Scikit-Learn ≥0.20 is required\n",
|
||||||
|
"import sklearn\n",
|
||||||
|
"assert sklearn.__version__ >= \"0.20\"\n",
|
||||||
|
"\n",
|
||||||
"# Common imports\n",
|
"# Common imports\n",
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"import os\n",
|
"import os\n",
|
||||||
|
@ -51,36 +55,21 @@
|
||||||
"# Where to save the figures\n",
|
"# Where to save the figures\n",
|
||||||
"PROJECT_ROOT_DIR = \".\"\n",
|
"PROJECT_ROOT_DIR = \".\"\n",
|
||||||
"CHAPTER_ID = \"dim_reduction\"\n",
|
"CHAPTER_ID = \"dim_reduction\"\n",
|
||||||
|
"IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID)\n",
|
||||||
|
"os.makedirs(IMAGES_PATH, exist_ok=True)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"def save_fig(fig_id, tight_layout=True):\n",
|
"def save_fig(fig_id, tight_layout=True, fig_extension=\"png\", resolution=300):\n",
|
||||||
" path = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id + \".png\")\n",
|
" path = os.path.join(IMAGES_PATH, fig_id + \".\" + fig_extension)\n",
|
||||||
" print(\"Saving figure\", fig_id)\n",
|
" print(\"Saving figure\", fig_id)\n",
|
||||||
" if tight_layout:\n",
|
" if tight_layout:\n",
|
||||||
" plt.tight_layout()\n",
|
" plt.tight_layout()\n",
|
||||||
" plt.savefig(path, format='png', dpi=300)\n",
|
" plt.savefig(path, format=fig_extension, dpi=resolution)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Ignore useless warnings (see SciPy issue #5998)\n",
|
"# Ignore useless warnings (see SciPy issue #5998)\n",
|
||||||
"import warnings\n",
|
"import warnings\n",
|
||||||
"warnings.filterwarnings(action=\"ignore\", message=\"^internal gelsd\")"
|
"warnings.filterwarnings(action=\"ignore\", message=\"^internal gelsd\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"This notebook assumes you have installed Scikit-Learn ≥0.20."
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 2,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import sklearn\n",
|
|
||||||
"assert sklearn.__version__ >= \"0.20\""
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
|
|
@ -20,7 +20,7 @@
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead)."
|
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -33,6 +33,10 @@
|
||||||
"import sys\n",
|
"import sys\n",
|
||||||
"assert sys.version_info >= (3, 5)\n",
|
"assert sys.version_info >= (3, 5)\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
"# Scikit-Learn ≥0.20 is required\n",
|
||||||
|
"import sklearn\n",
|
||||||
|
"assert sklearn.__version__ >= \"0.20\"\n",
|
||||||
|
"\n",
|
||||||
"# Common imports\n",
|
"# Common imports\n",
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"import os\n",
|
"import os\n",
|
||||||
|
@ -51,13 +55,15 @@
|
||||||
"# Where to save the figures\n",
|
"# Where to save the figures\n",
|
||||||
"PROJECT_ROOT_DIR = \".\"\n",
|
"PROJECT_ROOT_DIR = \".\"\n",
|
||||||
"CHAPTER_ID = \"unsupervised_learning\"\n",
|
"CHAPTER_ID = \"unsupervised_learning\"\n",
|
||||||
|
"IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID)\n",
|
||||||
|
"os.makedirs(IMAGES_PATH, exist_ok=True)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"def save_fig(fig_id, tight_layout=True):\n",
|
"def save_fig(fig_id, tight_layout=True, fig_extension=\"png\", resolution=300):\n",
|
||||||
" path = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id + \".png\")\n",
|
" path = os.path.join(IMAGES_PATH, fig_id + \".\" + fig_extension)\n",
|
||||||
" print(\"Saving figure\", fig_id)\n",
|
" print(\"Saving figure\", fig_id)\n",
|
||||||
" if tight_layout:\n",
|
" if tight_layout:\n",
|
||||||
" plt.tight_layout()\n",
|
" plt.tight_layout()\n",
|
||||||
" plt.savefig(path, format='png', dpi=300)\n",
|
" plt.savefig(path, format=fig_extension, dpi=resolution)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Ignore useless warnings (see SciPy issue #5998)\n",
|
"# Ignore useless warnings (see SciPy issue #5998)\n",
|
||||||
"import warnings\n",
|
"import warnings\n",
|
||||||
|
|
|
@ -20,7 +20,7 @@
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead)."
|
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0-preview."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -33,6 +33,14 @@
|
||||||
"import sys\n",
|
"import sys\n",
|
||||||
"assert sys.version_info >= (3, 5)\n",
|
"assert sys.version_info >= (3, 5)\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
"# Scikit-Learn ≥0.20 is required\n",
|
||||||
|
"import sklearn\n",
|
||||||
|
"assert sklearn.__version__ >= \"0.20\"\n",
|
||||||
|
"\n",
|
||||||
|
"# TensorFlow ≥2.0-preview is required\n",
|
||||||
|
"import tensorflow as tf\n",
|
||||||
|
"assert hasattr(tf.compat, \"v1\")\n",
|
||||||
|
"\n",
|
||||||
"# Common imports\n",
|
"# Common imports\n",
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"import os\n",
|
"import os\n",
|
||||||
|
@ -51,13 +59,15 @@
|
||||||
"# Where to save the figures\n",
|
"# Where to save the figures\n",
|
||||||
"PROJECT_ROOT_DIR = \".\"\n",
|
"PROJECT_ROOT_DIR = \".\"\n",
|
||||||
"CHAPTER_ID = \"ann\"\n",
|
"CHAPTER_ID = \"ann\"\n",
|
||||||
|
"IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID)\n",
|
||||||
|
"os.makedirs(IMAGES_PATH, exist_ok=True)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"def save_fig(fig_id, tight_layout=True):\n",
|
"def save_fig(fig_id, tight_layout=True, fig_extension=\"png\", resolution=300):\n",
|
||||||
" path = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id + \".png\")\n",
|
" path = os.path.join(IMAGES_PATH, fig_id + \".\" + fig_extension)\n",
|
||||||
" print(\"Saving figure\", fig_id)\n",
|
" print(\"Saving figure\", fig_id)\n",
|
||||||
" if tight_layout:\n",
|
" if tight_layout:\n",
|
||||||
" plt.tight_layout()\n",
|
" plt.tight_layout()\n",
|
||||||
" plt.savefig(path, format='png', dpi=300)\n",
|
" plt.savefig(path, format=fig_extension, dpi=resolution)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Ignore useless warnings (see SciPy issue #5998)\n",
|
"# Ignore useless warnings (see SciPy issue #5998)\n",
|
||||||
"import warnings\n",
|
"import warnings\n",
|
||||||
|
|
Loading…
Reference in New Issue