diff --git a/14_recurrent_neural_networks.ipynb b/14_recurrent_neural_networks.ipynb index c9eadd3..4318442 100644 --- a/14_recurrent_neural_networks.ipynb +++ b/14_recurrent_neural_networks.ipynb @@ -1386,6 +1386,29 @@ "outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Alternatively, you can use the Tensorflow class DeviceWrapper - note you can define more than one layer per gpu" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "devices = [\"/gpu:0\", \"/gpu:1\", \"/gpu:2\"] \n", + "cells = []\n", + "for dev in devices:\n", + " cell = DeviceWrapper(rnn_cell.BasicRNNCell(num_units=n_neurons), dev)\n", + " cells.append(cell)\n", + "\n", + "self.multiple_lstm_cells = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=True)\n", + "outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)" + ] + }, { "cell_type": "code", "execution_count": 76, @@ -2699,7 +2722,7 @@ "language_info": { "codemirror_mode": { "name": "ipython", - "version": 3 + "version": 3.0 }, "file_extension": ".py", "mimetype": "text/x-python", @@ -2713,7 +2736,7 @@ "navigate_menu": true, "number_sections": true, "sideBar": true, - "threshold": 6, + "threshold": 6.0, "toc_cell": false, "toc_section_display": "block", "toc_window_display": false