Update libraries
parent
8c0ab41ed9
commit
bde6c1704e
|
@ -4,42 +4,42 @@ channels:
|
|||
- defaults
|
||||
dependencies:
|
||||
- box2d-py=2.3 # used only in chapter 18, exercise 8
|
||||
- ffmpeg=5.1 # used only in the matplotlib tutorial to generate animations
|
||||
- ffmpeg=6.1 # used only in the matplotlib tutorial to generate animations
|
||||
- graphviz # used only in chapter 6 for dot files
|
||||
- python-graphviz # used only in chapter 6 for dot files
|
||||
- ipython=8.5 # a powerful Python shell
|
||||
- ipywidgets=8.0 # optionally used only in chapter 12 for tqdm in Jupyter
|
||||
- joblib=1.1 # used only in chapter 2 to save/load Scikit-Learn models
|
||||
- jupyterlab=3.4 # to edit and run Jupyter notebooks
|
||||
- matplotlib=3.5 # beautiful plots. See tutorial tools_matplotlib.ipynb
|
||||
- nbdime=3.1 # optional tool to diff Jupyter notebooks
|
||||
- nltk=3.6 # optionally used in chapter 3, exercise 4
|
||||
- ipython=8.17 # a powerful Python shell
|
||||
- ipywidgets=8.1 # optionally used only in chapter 12 for tqdm in Jupyter
|
||||
- joblib=1.3 # used only in chapter 2 to save/load Scikit-Learn models
|
||||
- jupyterlab=4.0 # to edit and run Jupyter notebooks
|
||||
- matplotlib=3.8 # beautiful plots. See tutorial tools_matplotlib.ipynb
|
||||
- nbdime=3.2 # optional tool to diff Jupyter notebooks
|
||||
- nltk=3.8 # optionally used in chapter 3, exercise 4
|
||||
- numexpr=2.8 # used only in the Pandas tutorial for numerical expressions
|
||||
- numpy=1.23 # Powerful n-dimensional arrays and numerical computing tools
|
||||
- pandas=1.4 # data analysis and manipulation tool
|
||||
- pillow=9.2 # image manipulation library, (used by matplotlib.image.imread)
|
||||
- numpy=1.26 # Powerful n-dimensional arrays and numerical computing tools
|
||||
- pandas=2.1 # data analysis and manipulation tool
|
||||
- pillow=10.1 # image manipulation library, (used by matplotlib.image.imread)
|
||||
- pip # Python's package-management system
|
||||
- py-xgboost=1.6 # used only in chapter 6 for optimized Gradient Boosting
|
||||
- py-xgboost=1.7 # used only in chapter 6 for optimized Gradient Boosting
|
||||
- pydot=1.4 # used only for in chapter 10 for tf.keras.utils.plot_model()
|
||||
- python=3.10 # your beloved programming language! :)
|
||||
- requests=2.28 # used only in chapter 19 for REST API queries
|
||||
- scikit-learn=1.1 # machine learning library
|
||||
- scipy=1.9 # scientific/technical computing library
|
||||
- statsmodels=0.13 # used only in chapter 15 for time series analysis
|
||||
- tqdm=4.64 # used only in chapter 12 to display nice progress bars
|
||||
- requests=2.31 # used only in chapter 19 for REST API queries
|
||||
- scikit-learn=1.3 # machine learning library
|
||||
- scipy=1.11 # scientific/technical computing library
|
||||
- statsmodels=0.14 # used only in chapter 15 for time series analysis
|
||||
- tqdm=4.66 # used only in chapter 12 to display nice progress bars
|
||||
- wheel # built-package format for pip
|
||||
- widgetsnbextension=4.0 # interactive HTML widgets for Jupyter notebooks
|
||||
- pip:
|
||||
- keras-tuner~=1.1.3 # used in chapters 10 and 19 for hyperparameter tuning
|
||||
- tensorboard-plugin-profile~=2.8.0 # profiling plugin for TensorBoard
|
||||
- tensorboard~=2.10.0 # TensorFlow's visualization toolkit
|
||||
- tensorflow-addons~=0.17.1 # used in chapters 11 & 16 (for AdamW & seq2seq)
|
||||
- tensorflow-datasets~=4.6.0 # datasets repository, ready to use
|
||||
- tensorflow-hub~=0.12.0 # trained ML models repository, ready to use
|
||||
- tensorflow-serving-api~=2.10.0 # or tensorflow-serving-api-gpu if gpu
|
||||
- tensorflow~=2.10.0 # Deep Learning library
|
||||
- transformers~=4.21.3 # Natural Language Processing lib for TF or PyTorch
|
||||
- urlextract~=1.6.0 # optionally used in chapter 3, exercise 4
|
||||
- gym[classic_control,atari,accept-rom-license]~=0.26.1 # used only in ch18
|
||||
- google-cloud-aiplatform~=1.17.0 # used only in chapter 19
|
||||
- google-cloud-storage~=2.5.0 # used only in chapter 19
|
||||
- keras-core # used in chapter 10
|
||||
- keras-tuner~=1.4.6 # used in chapters 10 and 19 for hyperparameter tuning
|
||||
- tensorboard-plugin-profile~=2.14.0 # profiling plugin for TensorBoard
|
||||
- tensorboard~=2.14.1 # TensorFlow's visualization toolkit
|
||||
- tensorflow-datasets~=4.9.3 # datasets repository, ready to use
|
||||
- tensorflow-hub~=0.15.0 # trained ML models repository, ready to use
|
||||
- tensorflow-serving-api~=2.14.0 # or tensorflow-serving-api-gpu if gpu
|
||||
- tensorflow~=2.14.0 # Deep Learning library
|
||||
- transformers~=4.35.0 # Natural Language Processing lib for TF or PyTorch
|
||||
- urlextract~=1.8.0 # optionally used in chapter 3, exercise 4
|
||||
- gym[classic_control,atari,accept-rom-license] # used only in ch18
|
||||
- google-cloud-aiplatform~=1.36.2 # used only in chapter 19
|
||||
- google-cloud-storage~=2.13.0 # used only in chapter 19
|
||||
|
|
|
@ -4,20 +4,20 @@
|
|||
|
||||
|
||||
##### Core scientific packages
|
||||
jupyterlab~=3.4.6
|
||||
matplotlib~=3.5.3
|
||||
numpy~=1.23.3
|
||||
pandas~=1.4.4
|
||||
scipy~=1.9.1
|
||||
jupyterlab~=4.0.8
|
||||
matplotlib~=3.8.1
|
||||
numpy~=1.26.2
|
||||
pandas~=2.1.3
|
||||
scipy~=1.11.3
|
||||
|
||||
##### Machine Learning packages
|
||||
scikit-learn~=1.1.2
|
||||
scikit-learn~=1.3.2
|
||||
|
||||
# Optional: the XGBoost library is only used in chapter 7
|
||||
xgboost~=1.6.2
|
||||
xgboost~=2.0.2
|
||||
|
||||
# Optional: the transformers library is only used in chapter 16
|
||||
transformers~=4.21.3
|
||||
transformers~=4.35.0
|
||||
|
||||
##### TensorFlow-related packages
|
||||
|
||||
|
@ -27,26 +27,24 @@ transformers~=4.21.3
|
|||
# you must install CUDA, cuDNN and more: see tensorflow.org for the detailed
|
||||
# installation instructions.
|
||||
|
||||
tensorflow~=2.10.0
|
||||
tensorflow~=2.14.0
|
||||
keras-core
|
||||
# Optional: the TF Serving API library is just needed for chapter 18.
|
||||
tensorflow-serving-api~=2.10.0 # or tensorflow-serving-api-gpu if gpu
|
||||
tensorflow-serving-api~=2.14.0 # or tensorflow-serving-api-gpu if gpu
|
||||
|
||||
tensorboard~=2.10.0
|
||||
tensorboard-plugin-profile~=2.8.0
|
||||
tensorflow-datasets~=4.6.0
|
||||
tensorflow-hub~=0.12.0
|
||||
tensorboard~=2.14.1
|
||||
tensorboard-plugin-profile~=2.14.0
|
||||
tensorflow-datasets~=4.9.3
|
||||
tensorflow-hub~=0.15.0
|
||||
|
||||
# Used in chapter 10 and 19 for hyperparameter tuning
|
||||
keras-tuner~=1.1.3
|
||||
|
||||
# Optional: used in chapters 11 & 16 (for AdamW & seq2seq)
|
||||
tensorflow-addons~=0.17.1
|
||||
keras-tuner~=1.4.6
|
||||
|
||||
##### Reinforcement Learning library (chapter 18)
|
||||
|
||||
# There are a few dependencies you need to install first, check out:
|
||||
# https://github.com/openai/gym#installing-everything
|
||||
gym[Box2D,atari,accept-rom-license]~=0.26.1
|
||||
gym[Box2D,atari,accept-rom-license]~=0.26.2
|
||||
|
||||
# WARNING: on Windows, installing Box2D this way requires:
|
||||
# * Swig: http://www.swig.org/download.html
|
||||
|
@ -55,39 +53,40 @@ gym[Box2D,atari,accept-rom-license]~=0.26.1
|
|||
# It's much easier to use Anaconda instead.
|
||||
|
||||
##### Image manipulation
|
||||
Pillow~=9.2.0
|
||||
Pillow~=10.1.0
|
||||
graphviz~=0.20.1
|
||||
|
||||
##### Google Cloud Platform - used only in chapter 19
|
||||
google-cloud-aiplatform~=1.17.0
|
||||
google-cloud-storage~=2.5.0
|
||||
google-cloud-aiplatform~=1.36.2
|
||||
google-cloud-storage~=2.13.0
|
||||
|
||||
##### Additional utilities
|
||||
|
||||
# Efficient jobs (caching, parallelism, persistence)
|
||||
joblib~=1.1.0
|
||||
joblib~=1.3.2
|
||||
|
||||
# Easy http requests
|
||||
requests~=2.28.1
|
||||
requests~=2.31.0
|
||||
|
||||
# Nice utility to diff Jupyter Notebooks.
|
||||
nbdime~=3.1.1
|
||||
nbdime~=3.2.1
|
||||
|
||||
# May be useful with Pandas for complex "where" clauses (e.g., Pandas
|
||||
# tutorial).
|
||||
numexpr~=2.8.3
|
||||
numexpr~=2.8.7
|
||||
|
||||
# Optional: these libraries can be useful in chapter 3, exercise 4.
|
||||
nltk~=3.7
|
||||
urlextract~=1.6.0
|
||||
nltk~=3.8.1
|
||||
urlextract~=1.8.0
|
||||
|
||||
# Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook
|
||||
# support
|
||||
tqdm~=4.64.1
|
||||
ipywidgets~=8.0.2
|
||||
tqdm~=4.66.1
|
||||
ipywidgets~=8.1.1
|
||||
|
||||
# Optional: pydot is only used in chapter 10 for tf.keras.utils.plot_model()
|
||||
pydot~=1.4.2
|
||||
|
||||
# Optional: statsmodels is only used in chapter 15 for time series analysis
|
||||
statsmodels~=0.13.2
|
||||
statsmodels~=0.14.0
|
||||
|
||||
|
|
Loading…
Reference in New Issue