From 871b6a46d14dbf881e0a422b2bf5efa484a0b4c6 Mon Sep 17 00:00:00 2001 From: Daniel Ingram Date: Tue, 4 Sep 2018 18:31:53 -0400 Subject: [PATCH 1/3] Visualization of differences between gradient descent methods --- gradient_descent_comparison.py | 129 +++++++++++++++++++++++++++++++++ 1 file changed, 129 insertions(+) create mode 100644 gradient_descent_comparison.py diff --git a/gradient_descent_comparison.py b/gradient_descent_comparison.py new file mode 100644 index 0000000..d463ec6 --- /dev/null +++ b/gradient_descent_comparison.py @@ -0,0 +1,129 @@ +from __future__ import print_function, division, unicode_literals +import sys +from math import sqrt +import numpy as np +import matplotlib.pyplot as plt + +m = 100 +X = 2*np.random.rand(m, 1) +X_b = np.c_[np.ones((m, 1)), X] +y = 4 + 3*X + np.random.rand(m, 1) + +fig = plt.figure(figsize=(10, 5)) +data_ax = fig.add_subplot(121) +cost_ax = fig.add_subplot(122) + +def batch_gradient_descent(): + n_iterations = 1000 + learning_rate = 0.05 + thetas = np.random.randn(2, 1) + thetas_path = [thetas] + for i in range(n_iterations): + gradients = 2*X_b.T.dot(X_b.dot(thetas) - y)/m + thetas = thetas - learning_rate*gradients + thetas_path.append(thetas) + + return thetas_path + +def stochastic_gradient_descent(): + n_epochs = 50 + t0, t1 = 5, 50 + thetas = np.random.randn(2, 1) + thetas_path = [thetas] + for epoch in range(n_epochs): + for i in range(m): + random_index = np.random.randint(m) + xi = X_b[random_index:random_index+1] + yi = y[random_index:random_index+1] + gradients = 2*xi.T.dot(xi.dot(thetas) - yi) + eta = learning_schedule(epoch*m + i, t0, t1) + thetas = thetas - eta*gradients + thetas_path.append(thetas) + + return thetas_path + +def mini_batch_gradient_descent(): + n_iterations = 50 + minibatch_size = 20 + t0, t1 = 200, 1000 + thetas = np.random.randn(2, 1) + thetas_path = [thetas] + t = 0 + for epoch in range(n_iterations): + shuffled_indices = np.random.permutation(m) + X_b_shuffled = X_b[shuffled_indices] + y_shuffled = y[shuffled_indices] + for i in range(0, m, minibatch_size): + t += 1 + xi = X_b_shuffled[i:i+minibatch_size] + yi = y_shuffled[i:i+minibatch_size] + gradients = 2*xi.T.dot(xi.dot(thetas) - yi)/minibatch_size + eta = learning_schedule(t, t0, t1) + thetas = thetas - eta*gradients + thetas_path.append(thetas) + + return thetas_path + +def compute_mse(theta): + return np.sum((np.dot(X_b, theta) - y)**2)/m + +def learning_schedule(t, t0, t1): + return t0/(t+t1) + +if __name__ == '__main__': + plt.ion() + + theta0, theta1 = np.meshgrid(np.arange(0, 5, 0.1), np.arange(0, 5, 0.1)) + r, c = theta0.shape + cost_map = np.array([[0 for _ in range(c)] for _ in range(r)]) + for i in range(r): + for j in range(c): + theta = np.array([theta0[i,j], theta1[i,j]]) + cost_map[i,j] = compute_mse(theta) + + exact_solution = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y) + bgd_thetas = np.array(batch_gradient_descent()) + sgd_thetas = np.array(stochastic_gradient_descent()) + mbgd_thetas = np.array(mini_batch_gradient_descent()) + + bgd_len = len(bgd_thetas) + sgd_len = len(sgd_thetas) + mbgd_len = len(mbgd_thetas) + n_iter = min(bgd_len, sgd_len, mbgd_len) + + cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*') + cost_img = cost_ax.pcolor(theta0, theta1, cost_map) + fig.colorbar(cost_img) + + for i in range(n_iter): + data_ax.cla() + cost_ax.cla() + + data_ax.plot(X, y, 'k.') + + cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*') + cost_ax.pcolor(theta0, theta1, cost_map) + + data_ax.plot(X, X_b.dot(bgd_thetas[i,:]), 'r-') + cost_ax.plot(bgd_thetas[:i,0], bgd_thetas[:i,1], 'r--') + + data_ax.plot(X, X_b.dot(sgd_thetas[i,:]), 'g-') + cost_ax.plot(sgd_thetas[:i,0], sgd_thetas[:i,1], 'g--') + + data_ax.plot(X, X_b.dot(mbgd_thetas[i,:]), 'b-') + cost_ax.plot(mbgd_thetas[:i,0], mbgd_thetas[:i,1], 'b--') + + data_ax.set_xlim([0, 2]) + data_ax.set_ylim([0, 15]) + cost_ax.set_xlim([0, 5]) + cost_ax.set_ylim([0, 5]) + + data_ax.set_xlabel(r'$x_1$') + data_ax.set_ylabel(r'$y$') + cost_ax.set_xlabel(r'$\theta_0$') + cost_ax.set_ylabel(r'$\theta_1$') + + data_ax.legend(('Data', 'BGD', 'SGD', 'MBGD')) + cost_ax.legend(('Normal Equation', 'BGD', 'SGD', 'MBGD')) + + plt.pause(1e-5) \ No newline at end of file From 4c582e58278757357b69602f744b4cf98ed3b6dd Mon Sep 17 00:00:00 2001 From: Daniel Ingram Date: Wed, 5 Sep 2018 21:11:28 -0400 Subject: [PATCH 2/3] Jupyter notebook for comparison of gradient descent methods --- gradient_descent_comparison.ipynb | 241 ++++++++++++++++++++++++++++++ 1 file changed, 241 insertions(+) create mode 100644 gradient_descent_comparison.ipynb diff --git a/gradient_descent_comparison.ipynb b/gradient_descent_comparison.ipynb new file mode 100644 index 0000000..8e2d699 --- /dev/null +++ b/gradient_descent_comparison.ipynb @@ -0,0 +1,241 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from __future__ import print_function, division, unicode_literals\n", + "import numpy as np\n", + "\n", + "%matplotlib nbagg\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.animation import FuncAnimation" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "m = 100\n", + "X = 2*np.random.rand(m, 1)\n", + "X_b = np.c_[np.ones((m, 1)), X]\n", + "y = 4 + 3*X + np.random.rand(m, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def batch_gradient_descent():\n", + " n_iterations = 1000\n", + " learning_rate = 0.05\n", + " thetas = np.random.randn(2, 1)\n", + " thetas_path = [thetas]\n", + " for i in range(n_iterations):\n", + " gradients = 2*X_b.T.dot(X_b.dot(thetas) - y)/m\n", + " thetas = thetas - learning_rate*gradients\n", + " thetas_path.append(thetas)\n", + "\n", + " return thetas_path" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def stochastic_gradient_descent():\n", + " n_epochs = 50\n", + " t0, t1 = 5, 50\n", + " thetas = np.random.randn(2, 1)\n", + " thetas_path = [thetas]\n", + " for epoch in range(n_epochs):\n", + " for i in range(m):\n", + " random_index = np.random.randint(m)\n", + " xi = X_b[random_index:random_index+1]\n", + " yi = y[random_index:random_index+1]\n", + " gradients = 2*xi.T.dot(xi.dot(thetas) - yi)\n", + " eta = learning_schedule(epoch*m + i, t0, t1)\n", + " thetas = thetas - eta*gradients\n", + " thetas_path.append(thetas)\n", + "\n", + " return thetas_path" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def mini_batch_gradient_descent():\n", + " n_iterations = 50\n", + " minibatch_size = 20\n", + " t0, t1 = 200, 1000\n", + " thetas = np.random.randn(2, 1)\n", + " thetas_path = [thetas]\n", + " t = 0\n", + " for epoch in range(n_iterations):\n", + " shuffled_indices = np.random.permutation(m)\n", + " X_b_shuffled = X_b[shuffled_indices]\n", + " y_shuffled = y[shuffled_indices]\n", + " for i in range(0, m, minibatch_size):\n", + " t += 1\n", + " xi = X_b_shuffled[i:i+minibatch_size]\n", + " yi = y_shuffled[i:i+minibatch_size]\n", + " gradients = 2*xi.T.dot(xi.dot(thetas) - yi)/minibatch_size\n", + " eta = learning_schedule(t, t0, t1)\n", + " thetas = thetas - eta*gradients\n", + " thetas_path.append(thetas)\n", + "\n", + " return thetas_path" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def compute_mse(theta):\n", + " return np.sum((np.dot(X_b, theta) - y)**2)/m" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def learning_schedule(t, t0, t1):\n", + " return t0/(t+t1)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "theta0, theta1 = np.meshgrid(np.arange(0, 5, 0.1), np.arange(0, 5, 0.1))\n", + "r, c = theta0.shape\n", + "cost_map = np.array([[0 for _ in range(c)] for _ in range(r)])\n", + "for i in range(r):\n", + " for j in range(c):\n", + " theta = np.array([theta0[i,j], theta1[i,j]])\n", + " cost_map[i,j] = compute_mse(theta)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "exact_solution = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)\n", + "bgd_thetas = np.array(batch_gradient_descent())\n", + "sgd_thetas = np.array(stochastic_gradient_descent())\n", + "mbgd_thetas = np.array(mini_batch_gradient_descent())" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "bgd_len = len(bgd_thetas)\n", + "sgd_len = len(sgd_thetas)\n", + "mbgd_len = len(mbgd_thetas)\n", + "n_iter = min(bgd_len, sgd_len, mbgd_len)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "fig = plt.figure(figsize=(10, 5))\n", + "data_ax = fig.add_subplot(121)\n", + "cost_ax = fig.add_subplot(122)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "def animate(i):\n", + " data_ax.cla()\n", + " cost_ax.cla()\n", + "\n", + " data_ax.plot(X, y, 'k.')\n", + "\n", + " cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*')\n", + " cost_ax.pcolor(theta0, theta1, cost_map)\n", + "\n", + " data_ax.plot(X, X_b.dot(bgd_thetas[i,:]), 'r-')\n", + " cost_ax.plot(bgd_thetas[:i,0], bgd_thetas[:i,1], 'r--')\n", + "\n", + " data_ax.plot(X, X_b.dot(sgd_thetas[i,:]), 'g-')\n", + " cost_ax.plot(sgd_thetas[:i,0], sgd_thetas[:i,1], 'g--')\n", + "\n", + " data_ax.plot(X, X_b.dot(mbgd_thetas[i,:]), 'b-')\n", + " cost_ax.plot(mbgd_thetas[:i,0], mbgd_thetas[:i,1], 'b--')\n", + "\n", + " data_ax.set_xlim([0, 2])\n", + " data_ax.set_ylim([0, 15])\n", + " cost_ax.set_xlim([0, 5])\n", + " cost_ax.set_ylim([0, 5])\n", + "\n", + " data_ax.set_xlabel(r'$x_1$')\n", + " data_ax.set_ylabel(r'$y$')\n", + " cost_ax.set_xlabel(r'$\\theta_0$')\n", + " cost_ax.set_ylabel(r'$\\theta_1$')\n", + "\n", + " data_ax.legend(('Data', 'BGD', 'SGD', 'MBGD'))\n", + " cost_ax.legend(('Normal Equation', 'BGD', 'SGD', 'MBGD'))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "animation = FuncAnimation(fig, animate, frames=n_iter)\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 3651a2608b468e3375795151d4182303eaf858f8 Mon Sep 17 00:00:00 2001 From: Daniel Ingram Date: Wed, 5 Sep 2018 21:17:22 -0400 Subject: [PATCH 3/3] Added colorbar to cost plot --- gradient_descent_comparison.ipynb | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) diff --git a/gradient_descent_comparison.ipynb b/gradient_descent_comparison.ipynb index 8e2d699..38da6f4 100644 --- a/gradient_descent_comparison.ipynb +++ b/gradient_descent_comparison.ipynb @@ -159,18 +159,22 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(10, 5))\n", "data_ax = fig.add_subplot(121)\n", - "cost_ax = fig.add_subplot(122)" + "cost_ax = fig.add_subplot(122)\n", + "\n", + "cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*')\n", + "cost_img = cost_ax.pcolor(theta0, theta1, cost_map)\n", + "fig.colorbar(cost_img)" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -208,7 +212,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [