Merge branch 'master' of github.com:ageron/handson-ml
commit
cd9dc675fc
|
@ -2,10 +2,7 @@
|
|||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"**Chapter 1 – The Machine Learning landscape**\n",
|
||||
"\n",
|
||||
|
@ -14,20 +11,14 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:"
|
||||
]
|
||||
|
@ -36,9 +27,6 @@
|
|||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true,
|
||||
"slideshow": {
|
||||
"slide_type": "-"
|
||||
}
|
||||
|
@ -50,11 +38,10 @@
|
|||
"\n",
|
||||
"# Common imports\n",
|
||||
"import numpy as np\n",
|
||||
"import numpy.random as rnd\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"# to make this notebook's output stable across runs\n",
|
||||
"rnd.seed(42)\n",
|
||||
"np.random.seed(42)\n",
|
||||
"\n",
|
||||
"# To plot pretty figures\n",
|
||||
"%matplotlib inline\n",
|
||||
|
@ -73,35 +60,173 @@
|
|||
" print(\"Saving figure\", fig_id)\n",
|
||||
" if tight_layout:\n",
|
||||
" plt.tight_layout()\n",
|
||||
" plt.savefig(path, format='png', dpi=300)"
|
||||
" plt.savefig(path, format='png', dpi=300)\n",
|
||||
"\n",
|
||||
"# Ignore useless warnings (see SciPy issue #5998)\n",
|
||||
"import warnings\n",
|
||||
"warnings.filterwarnings(action=\"ignore\", module=\"scipy\", message=\"^internal gelsd\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Load and prepare Life satisfaction data"
|
||||
"# Code example 1-1"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This function just merges the OECD's life satisfaction data and the IMF's GDP per capita data. It's a bit too long and boring and it's not specific to Machine Learning, which is why I left it out of the book."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def prepare_country_stats(oecd_bli, gdp_per_capita):\n",
|
||||
" oecd_bli = oecd_bli[oecd_bli[\"INEQUALITY\"]==\"TOT\"]\n",
|
||||
" oecd_bli = oecd_bli.pivot(index=\"Country\", columns=\"Indicator\", values=\"Value\")\n",
|
||||
" gdp_per_capita.rename(columns={\"2015\": \"GDP per capita\"}, inplace=True)\n",
|
||||
" gdp_per_capita.set_index(\"Country\", inplace=True)\n",
|
||||
" full_country_stats = pd.merge(left=oecd_bli, right=gdp_per_capita,\n",
|
||||
" left_index=True, right_index=True)\n",
|
||||
" full_country_stats.sort_values(by=\"GDP per capita\", inplace=True)\n",
|
||||
" remove_indices = [0, 1, 6, 8, 33, 34, 35]\n",
|
||||
" keep_indices = list(set(range(36)) - set(remove_indices))\n",
|
||||
" return full_country_stats[[\"GDP per capita\", 'Life satisfaction']].iloc[keep_indices]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The code in the book expects the data files to be located in the current directory. I just tweaked it here to fetch the files in datasets/lifesat."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"datapath = os.path.join(\"datasets\", \"lifesat\", \"\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Code example\n",
|
||||
"import matplotlib\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"import sklearn.linear_model\n",
|
||||
"\n",
|
||||
"# Download CSV from http://stats.oecd.org/index.aspx?DataSetCode=BLI\n",
|
||||
"datapath = \"datasets/lifesat/\"\n",
|
||||
"# Load the data\n",
|
||||
"oecd_bli = pd.read_csv(datapath + \"oecd_bli_2015.csv\", thousands=',')\n",
|
||||
"gdp_per_capita = pd.read_csv(datapath + \"gdp_per_capita.csv\",thousands=',',delimiter='\\t',\n",
|
||||
" encoding='latin1', na_values=\"n/a\")\n",
|
||||
"\n",
|
||||
"oecd_bli = pd.read_csv(datapath+\"oecd_bli_2015.csv\", thousands=',')\n",
|
||||
"# Prepare the data\n",
|
||||
"country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)\n",
|
||||
"X = np.c_[country_stats[\"GDP per capita\"]]\n",
|
||||
"y = np.c_[country_stats[\"Life satisfaction\"]]\n",
|
||||
"\n",
|
||||
"# Visualize the data\n",
|
||||
"country_stats.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction')\n",
|
||||
"plt.show()\n",
|
||||
"\n",
|
||||
"# Select a linear model\n",
|
||||
"model = sklearn.linear_model.LinearRegression()\n",
|
||||
"\n",
|
||||
"# Train the model\n",
|
||||
"model.fit(X, y)\n",
|
||||
"\n",
|
||||
"# Make a prediction for Cyprus\n",
|
||||
"X_new = [[22587]] # Cyprus' GDP per capita\n",
|
||||
"print(model.predict(X_new)) # outputs [[ 5.96242338]]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Note: you can ignore the rest of this notebook, it just generates many of the figures in chapter 1."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Load and prepare Life satisfaction data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"If you want, you can get fresh data from the OECD's website.\n",
|
||||
"Download the CSV from http://stats.oecd.org/index.aspx?DataSetCode=BLI\n",
|
||||
"and save it to `datasets/lifesat/`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"oecd_bli = pd.read_csv(datapath + \"oecd_bli_2015.csv\", thousands=',')\n",
|
||||
"oecd_bli = oecd_bli[oecd_bli[\"INEQUALITY\"]==\"TOT\"]\n",
|
||||
"oecd_bli = oecd_bli.pivot(index=\"Country\", columns=\"Indicator\", values=\"Value\")\n",
|
||||
"oecd_bli.head(2)"
|
||||
|
@ -109,12 +234,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"oecd_bli[\"Life satisfaction\"].head()"
|
||||
|
@ -122,25 +243,24 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Load and prepare GDP per capita data"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Just like above, you can update the GDP per capita data if you want. Just download data from http://goo.gl/j1MSKe (=> imf.org) and save it to `datasets/lifesat/`."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Download data from http://goo.gl/j1MSKe (=> imf.org)\n",
|
||||
"gdp_per_capita = pd.read_csv(datapath+\"gdp_per_capita.csv\", thousands=',', delimiter='\\t',\n",
|
||||
" encoding='latin1', na_values=\"n/a\")\n",
|
||||
"gdp_per_capita.rename(columns={\"2015\": \"GDP per capita\"}, inplace=True)\n",
|
||||
|
@ -150,12 +270,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"full_country_stats = pd.merge(left=oecd_bli, right=gdp_per_capita, left_index=True, right_index=True)\n",
|
||||
|
@ -165,12 +281,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"full_country_stats[[\"GDP per capita\", 'Life satisfaction']].loc[\"United States\"]"
|
||||
|
@ -178,12 +290,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"remove_indices = [0, 1, 6, 8, 33, 34, 35]\n",
|
||||
|
@ -195,12 +303,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(5,3))\n",
|
||||
|
@ -224,25 +328,17 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sample_data.to_csv(\"life_satisfaction_vs_gdp_per_capita.csv\")"
|
||||
"sample_data.to_csv(os.path.join(\"datasets\", \"lifesat\", \"lifesat.csv\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sample_data.loc[list(position_text.keys())]"
|
||||
|
@ -250,12 +346,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
|
@ -278,12 +370,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn import linear_model\n",
|
||||
|
@ -297,12 +385,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(5,3))\n",
|
||||
|
@ -317,12 +401,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"cyprus_gdp_per_capita = gdp_per_capita.loc[\"Cyprus\"][\"GDP per capita\"]\n",
|
||||
|
@ -333,12 +413,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(5,3), s=1)\n",
|
||||
|
@ -356,12 +432,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sample_data[7:10]"
|
||||
|
@ -369,12 +441,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"(5.1+5.7+6.5)/3"
|
||||
|
@ -382,28 +450,29 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"backup = oecd_bli, gdp_per_capita\n",
|
||||
"\n",
|
||||
"def prepare_country_stats(oecd_bli, gdp_per_capita):\n",
|
||||
" return sample_data"
|
||||
" oecd_bli = oecd_bli[oecd_bli[\"INEQUALITY\"]==\"TOT\"]\n",
|
||||
" oecd_bli = oecd_bli.pivot(index=\"Country\", columns=\"Indicator\", values=\"Value\")\n",
|
||||
" gdp_per_capita.rename(columns={\"2015\": \"GDP per capita\"}, inplace=True)\n",
|
||||
" gdp_per_capita.set_index(\"Country\", inplace=True)\n",
|
||||
" full_country_stats = pd.merge(left=oecd_bli, right=gdp_per_capita,\n",
|
||||
" left_index=True, right_index=True)\n",
|
||||
" full_country_stats.sort_values(by=\"GDP per capita\", inplace=True)\n",
|
||||
" remove_indices = [0, 1, 6, 8, 33, 34, 35]\n",
|
||||
" keep_indices = list(set(range(36)) - set(remove_indices))\n",
|
||||
" return full_country_stats[[\"GDP per capita\", 'Life satisfaction']].iloc[keep_indices]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Code example\n",
|
||||
|
@ -440,12 +509,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"oecd_bli, gdp_per_capita = backup"
|
||||
|
@ -453,12 +518,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"missing_data"
|
||||
|
@ -466,12 +527,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"position_text2 = {\n",
|
||||
|
@ -487,12 +544,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(8,3))\n",
|
||||
|
@ -522,12 +575,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 27,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"full_country_stats.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(8,3))\n",
|
||||
|
@ -550,12 +599,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 28,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"full_country_stats.loc[[c for c in full_country_stats.index if \"W\" in c.upper()]][\"Life satisfaction\"]"
|
||||
|
@ -563,12 +608,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 29,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"gdp_per_capita.loc[[c for c in gdp_per_capita.index if \"W\" in c.upper()]].head()"
|
||||
|
@ -576,12 +617,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 30,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"plt.figure(figsize=(8,3))\n",
|
||||
|
@ -611,12 +648,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 31,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"backup = oecd_bli, gdp_per_capita\n",
|
||||
|
@ -627,12 +660,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 32,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Replace this linear model:\n",
|
||||
|
@ -641,12 +670,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 33,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# with this k-neighbors regression model:\n",
|
||||
|
@ -655,12 +680,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"execution_count": 34,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X = np.c_[country_stats[\"GDP per capita\"]]\n",
|
||||
|
@ -677,11 +698,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"deletable": true,
|
||||
"editable": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
|
@ -702,7 +719,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.3"
|
||||
"version": "3.6.3"
|
||||
},
|
||||
"nav_menu": {},
|
||||
"toc": {
|
||||
|
@ -723,5 +740,5 @@
|
|||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -241,7 +241,7 @@
|
|||
"source": [
|
||||
"from sklearn.linear_model import SGDClassifier\n",
|
||||
"\n",
|
||||
"sgd_clf = SGDClassifier(random_state=42)\n",
|
||||
"sgd_clf = SGDClassifier(max_iter=5, random_state=42)\n",
|
||||
"sgd_clf.fit(X_train, y_train_5)"
|
||||
]
|
||||
},
|
||||
|
@ -766,7 +766,7 @@
|
|||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.multiclass import OneVsOneClassifier\n",
|
||||
"ovo_clf = OneVsOneClassifier(SGDClassifier(random_state=42))\n",
|
||||
"ovo_clf = OneVsOneClassifier(SGDClassifier(max_iter=5, random_state=42))\n",
|
||||
"ovo_clf.fit(X_train, y_train)\n",
|
||||
"ovo_clf.predict([some_digit])"
|
||||
]
|
||||
|
@ -948,7 +948,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_train_knn_pred = cross_val_predict(knn_clf, X_train, y_multilabel, cv=3)\n",
|
||||
"y_train_knn_pred = cross_val_predict(knn_clf, X_train, y_multilabel, cv=3, n_jobs=-1)\n",
|
||||
"f1_score(y_multilabel, y_train_knn_pred, average=\"macro\")"
|
||||
]
|
||||
},
|
||||
|
@ -1185,7 +1185,7 @@
|
|||
"param_grid = [{'weights': [\"uniform\", \"distance\"], 'n_neighbors': [3, 4, 5]}]\n",
|
||||
"\n",
|
||||
"knn_clf = KNeighborsClassifier()\n",
|
||||
"grid_search = GridSearchCV(knn_clf, param_grid, cv=5, verbose=3)\n",
|
||||
"grid_search = GridSearchCV(knn_clf, param_grid, cv=5, verbose=3, n_jobs=-1)\n",
|
||||
"grid_search.fit(X_train, y_train)"
|
||||
]
|
||||
},
|
||||
|
@ -2281,7 +2281,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"It seems that the ham emails are more often plain text, while spam has quite a lot of HTML. Moreover, quite a few ham emails are signed using PGP, while no spam is. In short, it seems that the email structure is a usual information to have."
|
||||
"It seems that the ham emails are more often plain text, while spam has quite a lot of HTML. Moreover, quite a few ham emails are signed using PGP, while no spam is. In short, it seems that the email structure is useful information to have."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -2714,8 +2714,8 @@
|
|||
"\n",
|
||||
"y_pred = log_clf.predict(X_test_transformed)\n",
|
||||
"\n",
|
||||
"print(\"Precision: {:.2f}%\".format(precision_score(y_test, y_pred)))\n",
|
||||
"print(\"Recall: {:.2f}%\".format(recall_score(y_test, y_pred)))"
|
||||
"print(\"Precision: {:.2f}%\".format(100 * precision_score(y_test, y_pred)))\n",
|
||||
"print(\"Recall: {:.2f}%\".format(100 * recall_score(y_test, y_pred)))"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -31,9 +31,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# To support both python 2 and python 3\n",
|
||||
|
@ -77,9 +75,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"np.random.seed(4)\n",
|
||||
|
@ -120,9 +116,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_centered = X - X.mean(axis=0)\n",
|
||||
|
@ -134,9 +128,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"m, n = X.shape\n",
|
||||
|
@ -157,9 +149,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"W2 = Vt.T[:, :2]\n",
|
||||
|
@ -169,9 +159,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X2D_using_svd = X2D"
|
||||
|
@ -194,9 +182,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.decomposition import PCA\n",
|
||||
|
@ -251,9 +237,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X3D_inv = pca.inverse_transform(X2D)"
|
||||
|
@ -301,9 +285,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X3D_inv_using_svd = X2D_using_svd.dot(Vt[:2, :])"
|
||||
|
@ -436,9 +418,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from matplotlib.patches import FancyArrowPatch\n",
|
||||
|
@ -466,9 +446,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"axes = [-1.8, 1.8, -1.3, 1.3, -1.0, 1.0]\n",
|
||||
|
@ -563,9 +541,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.datasets import make_swiss_roll\n",
|
||||
|
@ -785,9 +761,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from six.moves import urllib\n",
|
||||
|
@ -798,9 +772,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
|
@ -814,9 +786,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 33,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pca = PCA()\n",
|
||||
|
@ -837,9 +807,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 35,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pca = PCA(n_components=0.95)\n",
|
||||
|
@ -867,9 +835,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 38,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pca = PCA(n_components = 154)\n",
|
||||
|
@ -880,9 +846,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 39,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def plot_digits(instances, images_per_row=5, **options):\n",
|
||||
|
@ -921,9 +885,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 41,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_reduced_pca = X_reduced"
|
||||
|
@ -956,9 +918,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 43,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_recovered_inc_pca = inc_pca.inverse_transform(X_reduced)"
|
||||
|
@ -981,9 +941,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 45,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_reduced_inc_pca = X_reduced"
|
||||
|
@ -1038,9 +996,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 48,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"filename = \"my_mnist.data\"\n",
|
||||
|
@ -1060,9 +1016,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 49,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"del X_mm"
|
||||
|
@ -1091,9 +1045,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 51,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"rnd_pca = PCA(n_components=154, svd_solver=\"randomized\", random_state=42)\n",
|
||||
|
@ -1221,9 +1173,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 55,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X, t = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)"
|
||||
|
@ -1232,9 +1182,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 56,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.decomposition import KernelPCA\n",
|
||||
|
@ -1285,7 +1233,7 @@
|
|||
"source": [
|
||||
"plt.figure(figsize=(6, 5))\n",
|
||||
"\n",
|
||||
"X_inverse = pca.inverse_transform(X_reduced_rbf)\n",
|
||||
"X_inverse = rbf_pca.inverse_transform(X_reduced_rbf)\n",
|
||||
"\n",
|
||||
"ax = plt.subplot(111, projection='3d')\n",
|
||||
"ax.view_init(10, -70)\n",
|
||||
|
@ -2339,7 +2287,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.2"
|
||||
"version": "3.6.4"
|
||||
},
|
||||
"nav_menu": {
|
||||
"height": "352px",
|
||||
|
|
|
@ -31,9 +31,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# To support both python 2 and python 3\n",
|
||||
|
@ -79,9 +77,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def logit(z):\n",
|
||||
|
@ -134,9 +130,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import tensorflow as tf"
|
||||
|
@ -145,9 +139,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -161,9 +153,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"he_init = tf.contrib.layers.variance_scaling_initializer()\n",
|
||||
|
@ -188,9 +178,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def leaky_relu(z, alpha=0.01):\n",
|
||||
|
@ -226,9 +214,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -239,9 +225,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def leaky_relu(z, name=None):\n",
|
||||
|
@ -260,9 +244,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -276,9 +258,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X = tf.placeholder(tf.float32, shape=(None, n_inputs), name=\"X\")\n",
|
||||
|
@ -288,9 +268,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with tf.name_scope(\"dnn\"):\n",
|
||||
|
@ -302,9 +280,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with tf.name_scope(\"loss\"):\n",
|
||||
|
@ -315,9 +291,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"learning_rate = 0.01\n",
|
||||
|
@ -330,9 +304,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with tf.name_scope(\"eval\"):\n",
|
||||
|
@ -343,9 +315,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"init = tf.global_variables_initializer()\n",
|
||||
|
@ -404,9 +374,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def elu(z, alpha=1):\n",
|
||||
|
@ -441,9 +409,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -454,9 +420,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"hidden1 = tf.layers.dense(X, n_hidden1, activation=tf.nn.elu, name=\"hidden1\")"
|
||||
|
@ -479,9 +443,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def selu(z,\n",
|
||||
|
@ -543,9 +505,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def selu(z,\n",
|
||||
|
@ -571,9 +531,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -668,9 +626,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -702,9 +658,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -723,9 +677,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from functools import partial\n",
|
||||
|
@ -753,9 +705,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 33,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -811,9 +761,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 34,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"n_epochs = 20\n",
|
||||
|
@ -912,9 +860,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 38,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -946,9 +892,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 39,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"learning_rate = 0.01"
|
||||
|
@ -964,9 +908,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 40,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"threshold = 1.0\n",
|
||||
|
@ -988,9 +930,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 41,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with tf.name_scope(\"eval\"):\n",
|
||||
|
@ -1001,9 +941,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 42,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"init = tf.global_variables_initializer()\n",
|
||||
|
@ -1013,9 +951,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 43,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"n_epochs = 20\n",
|
||||
|
@ -1065,9 +1001,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 45,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()"
|
||||
|
@ -1076,9 +1010,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 46,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"saver = tf.train.import_meta_graph(\"./my_model_final.ckpt.meta\")"
|
||||
|
@ -1111,9 +1043,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 48,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from IPython.display import clear_output, Image, display, HTML\n",
|
||||
|
@ -1175,9 +1105,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 50,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X = tf.get_default_graph().get_tensor_by_name(\"X:0\")\n",
|
||||
|
@ -1198,9 +1126,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 51,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for op in (X, y, accuracy, training_op):\n",
|
||||
|
@ -1217,9 +1143,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 52,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X, y, accuracy, training_op = tf.get_collection(\"my_important_ops\")"
|
||||
|
@ -1280,9 +1204,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 55,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -1363,9 +1285,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 57,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -1437,9 +1357,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 59,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -1489,8 +1407,7 @@
|
|||
"source": [
|
||||
"reuse_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,\n",
|
||||
" scope=\"hidden[123]\") # regular expression\n",
|
||||
"reuse_vars_dict = dict([(var.op.name, var) for var in reuse_vars])\n",
|
||||
"restore_saver = tf.train.Saver(reuse_vars_dict) # to restore layers 1-3\n",
|
||||
"restore_saver = tf.train.Saver(reuse_vars) # to restore layers 1-3\n",
|
||||
"\n",
|
||||
"init = tf.global_variables_initializer()\n",
|
||||
"saver = tf.train.Saver()\n",
|
||||
|
@ -1527,9 +1444,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 61,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -1670,9 +1585,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 67,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -1706,9 +1619,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 68,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with tf.name_scope(\"train\"): # not shown in the book\n",
|
||||
|
@ -1721,9 +1632,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 69,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"init = tf.global_variables_initializer()\n",
|
||||
|
@ -1738,8 +1647,7 @@
|
|||
"source": [
|
||||
"reuse_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,\n",
|
||||
" scope=\"hidden[123]\") # regular expression\n",
|
||||
"reuse_vars_dict = dict([(var.op.name, var) for var in reuse_vars])\n",
|
||||
"restore_saver = tf.train.Saver(reuse_vars_dict) # to restore layers 1-3\n",
|
||||
"restore_saver = tf.train.Saver(reuse_vars) # to restore layers 1-3\n",
|
||||
"\n",
|
||||
"init = tf.global_variables_initializer()\n",
|
||||
"saver = tf.train.Saver()\n",
|
||||
|
@ -1762,9 +1670,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 71,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -1783,9 +1689,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 72,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with tf.name_scope(\"dnn\"):\n",
|
||||
|
@ -1804,9 +1708,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 73,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with tf.name_scope(\"loss\"):\n",
|
||||
|
@ -1837,8 +1739,7 @@
|
|||
"source": [
|
||||
"reuse_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,\n",
|
||||
" scope=\"hidden[123]\") # regular expression\n",
|
||||
"reuse_vars_dict = dict([(var.op.name, var) for var in reuse_vars])\n",
|
||||
"restore_saver = tf.train.Saver(reuse_vars_dict) # to restore layers 1-3\n",
|
||||
"restore_saver = tf.train.Saver(reuse_vars) # to restore layers 1-3\n",
|
||||
"\n",
|
||||
"init = tf.global_variables_initializer()\n",
|
||||
"saver = tf.train.Saver()\n",
|
||||
|
@ -1868,9 +1769,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 75,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -1913,15 +1812,12 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 76,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reuse_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,\n",
|
||||
" scope=\"hidden[123]\") # regular expression\n",
|
||||
"reuse_vars_dict = dict([(var.op.name, var) for var in reuse_vars])\n",
|
||||
"restore_saver = tf.train.Saver(reuse_vars_dict) # to restore layers 1-3\n",
|
||||
"restore_saver = tf.train.Saver(reuse_vars) # to restore layers 1-3\n",
|
||||
"\n",
|
||||
"init = tf.global_variables_initializer()\n",
|
||||
"saver = tf.train.Saver()"
|
||||
|
@ -4941,7 +4837,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.2"
|
||||
"version": "3.6.4"
|
||||
},
|
||||
"nav_menu": {
|
||||
"height": "360px",
|
||||
|
|
|
@ -31,9 +31,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# To support both python 2 and python 3\n",
|
||||
|
@ -80,9 +78,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def plot_image(image, shape=[28, 28]):\n",
|
||||
|
@ -93,9 +89,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def plot_multiple_images(images, n_rows, n_cols, pad=2):\n",
|
||||
|
@ -126,9 +120,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy.random as rnd\n",
|
||||
|
@ -419,9 +411,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -479,9 +469,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"saver = tf.train.Saver()"
|
||||
|
@ -532,7 +520,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"There are many ways to train one Autoencoder at a time. The first approach it to train each Autoencoder using a different graph, then we create the Stacked Autoencoder by simply initializing it with the weights and biases copied from these Autoencoders."
|
||||
"There are many ways to train one Autoencoder at a time. The first approach is to train each Autoencoder using a different graph, then we create the Stacked Autoencoder by simply initializing it with the weights and biases copied from these Autoencoders."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -545,9 +533,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reset_graph()\n",
|
||||
|
@ -555,8 +541,9 @@
|
|||
"from functools import partial\n",
|
||||
"\n",
|
||||
"def train_autoencoder(X_train, n_neurons, n_epochs, batch_size,\n",
|
||||
" learning_rate = 0.01, l2_reg = 0.0005,\n",
|
||||
" activation=tf.nn.elu, seed=42):\n",
|
||||
" learning_rate = 0.01, l2_reg = 0.0005, seed=42,\n",
|
||||
" hidden_activation=tf.nn.elu,\n",
|
||||
" output_activation=tf.nn.elu):\n",
|
||||
" graph = tf.Graph()\n",
|
||||
" with graph.as_default():\n",
|
||||
" tf.set_random_seed(seed)\n",
|
||||
|
@ -567,12 +554,11 @@
|
|||
" \n",
|
||||
" my_dense_layer = partial(\n",
|
||||
" tf.layers.dense,\n",
|
||||
" activation=activation,\n",
|
||||
" kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),\n",
|
||||
" kernel_regularizer=tf.contrib.layers.l2_regularizer(l2_reg))\n",
|
||||
"\n",
|
||||
" hidden = my_dense_layer(X, n_neurons, name=\"hidden\")\n",
|
||||
" outputs = my_dense_layer(hidden, n_inputs, activation=None, name=\"outputs\")\n",
|
||||
" hidden = my_dense_layer(X, n_neurons, activation=hidden_activation, name=\"hidden\")\n",
|
||||
" outputs = my_dense_layer(hidden, n_inputs, activation=output_activation, name=\"outputs\")\n",
|
||||
"\n",
|
||||
" reconstruction_loss = tf.reduce_mean(tf.square(outputs - X))\n",
|
||||
"\n",
|
||||
|
@ -614,7 +600,8 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"hidden_output, W1, b1, W4, b4 = train_autoencoder(mnist.train.images, n_neurons=300, n_epochs=4, batch_size=150)\n",
|
||||
"hidden_output, W1, b1, W4, b4 = train_autoencoder(mnist.train.images, n_neurons=300, n_epochs=4, batch_size=150,\n",
|
||||
" output_activation=None)\n",
|
||||
"_, W2, b2, W3, b3 = train_autoencoder(hidden_output, n_neurons=150, n_epochs=4, batch_size=150)"
|
||||
]
|
||||
},
|
||||
|
@ -1748,7 +1735,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.2"
|
||||
"version": "3.6.4"
|
||||
},
|
||||
"nav_menu": {
|
||||
"height": "381px",
|
||||
|
|
|
@ -574,6 +574,15 @@
|
|||
" plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"openai_cart_pole_rendering = False # don't try, just use the safe way?"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
|
|
13
README.md
13
README.md
|
@ -32,7 +32,11 @@ Of course, you obviously need Python. Python 2 is already preinstalled on most s
|
|||
$ python --version # for Python 2
|
||||
$ python3 --version # for Python 3
|
||||
|
||||
Any Python 3 version should be fine, preferably ≥3.5. If you don't have Python 3, I recommend installing it (Python ≥2.6 should work, but it is deprecated so Python 3 is preferable). To do so, you have several options: on Windows or MacOSX, you can just download it from [python.org](https://www.python.org/downloads/). On MacOSX, you can alternatively use [MacPorts](https://www.macports.org/) or [Homebrew](https://brew.sh/). On Linux, unless you know what you are doing, you should use your system's packaging system. For example, on Debian or Ubuntu, type:
|
||||
Any Python 3 version should be fine, preferably ≥3.5. If you don't have Python 3, I recommend installing it (Python ≥2.6 should work, but it is deprecated so Python 3 is preferable). To do so, you have several options: on Windows or MacOSX, you can just download it from [python.org](https://www.python.org/downloads/). On MacOSX, you can alternatively use [MacPorts](https://www.macports.org/) or [Homebrew](https://brew.sh/). If you are using Python 3.6 on MacOSX, you need to run the following command to install the `certifi` package of certificates because Python 3.6 on MacOSX has no certificates to validate SSL connections (see this [StackOverflow question](https://stackoverflow.com/questions/27835619/urllib-and-ssl-certificate-verify-failed-error)):
|
||||
|
||||
$ /Applications/Python\ 3.6/Install\ Certificates.command
|
||||
|
||||
On Linux, unless you know what you are doing, you should use your system's packaging system. For example, on Debian or Ubuntu, type:
|
||||
|
||||
$ sudo apt-get update
|
||||
$ sudo apt-get install python3
|
||||
|
@ -49,9 +53,9 @@ When using Anaconda, you can optionally create an isolated Python environment de
|
|||
|
||||
This creates a fresh Python 3.5 environment called `mlbook` (you can change the name if you want to), and it activates it. This environment contains all the scientific libraries that come with Anaconda. This includes all the libraries we will need (NumPy, Matplotlib, Pandas, Jupyter and a few others), except for TensorFlow, so let's install it:
|
||||
|
||||
$ conda install -n mlbook -c conda-forge tensorflow=1.0.0
|
||||
$ conda install -n mlbook -c conda-forge tensorflow=1.4.0
|
||||
|
||||
This installs TensorFlow 1.0.0 in the `mlbook` environment (fetching it from the `conda-forge` repository). If you chose not to create an `mlbook` environment, then just remove the `-n mlbook` option.
|
||||
This installs TensorFlow 1.4.0 in the `mlbook` environment (fetching it from the `conda-forge` repository). If you chose not to create an `mlbook` environment, then just remove the `-n mlbook` option.
|
||||
|
||||
Next, you can optionally install Jupyter extensions. These are useful to have nice tables of contents in the notebooks, but they are not required.
|
||||
|
||||
|
@ -105,3 +109,6 @@ This should open up your browser, and you should see Jupyter's tree view, with t
|
|||
Note: you can also visit [http://localhost:8888/nbextensions](http://localhost:8888/nbextensions) to activate and configure Jupyter extensions.
|
||||
|
||||
Congrats! You are ready to learn Machine Learning, hands on!
|
||||
|
||||
# Contributors
|
||||
I would like to thank everyone who contributed to this project, either by providing useful feedback, filing issues or submitting Pull Requests. Special thanks go to Steven Bunkley and Ziembla who created the `docker` directory.
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
COMPOSE_PROJECT_NAME=handson-ml
|
|
@ -1,28 +1,33 @@
|
|||
FROM continuumio/anaconda3
|
||||
|
||||
RUN apt-get update && apt-get upgrade -y \
|
||||
&& apt-get install -y \
|
||||
libpq-dev \
|
||||
build-essential \
|
||||
git \
|
||||
sudo \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
&& apt-get install -y \
|
||||
libpq-dev \
|
||||
build-essential \
|
||||
git \
|
||||
sudo \
|
||||
cmake zlib1g-dev libjpeg-dev xvfb libav-tools xorg-dev libboost-all-dev libsdl2-dev swig \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN conda update -n base conda
|
||||
RUN conda install -y -c conda-forge \
|
||||
tensorflow=1.0.0 \
|
||||
jupyter_contrib_nbextensions
|
||||
tensorflow \
|
||||
jupyter_contrib_nbextensions \
|
||||
pyopengl
|
||||
RUN pip install "gym[atari,box2d,classic_control]"
|
||||
|
||||
ARG username
|
||||
ARG userid
|
||||
|
||||
ARG home=/home/${username}
|
||||
ARG workdir=${home}/handson-ml
|
||||
|
||||
RUN adduser ${username} --uid ${userid} --gecos '' --disabled-password \
|
||||
&& echo "${username} ALL=(root) NOPASSWD:ALL" > /etc/sudoers.d/${username} \
|
||||
&& chmod 0440 /etc/sudoers.d/${username}
|
||||
&& echo "${username} ALL=(root) NOPASSWD:ALL" > /etc/sudoers.d/${username} \
|
||||
&& chmod 0440 /etc/sudoers.d/${username}
|
||||
|
||||
ENV HOME /home/${username}
|
||||
|
||||
WORKDIR ${HOME}/handson-ml
|
||||
RUN chown ${username}:${username} ${HOME}/handson-ml
|
||||
WORKDIR ${workdir}
|
||||
RUN chown ${username}:${username} ${workdir}
|
||||
|
||||
USER ${username}
|
||||
|
||||
|
@ -30,6 +35,55 @@ RUN jupyter contrib nbextension install --user
|
|||
RUN jupyter nbextension enable toc2/main
|
||||
|
||||
|
||||
# INFO: Jupyter and nbdime extension are not totally integrated (anaconda image is py36,
|
||||
# nbdime checks for py35 at the moment, still the config below enables diffing
|
||||
# notebooks with nbdiff (and nbdiff support in git diff command) after connecting
|
||||
# to the container by "make exec" (or "docker-compose exec handson-ml bash")
|
||||
# You may also try running:
|
||||
# nbd NOTEBOOK_NAME.ipynb
|
||||
# to get nbdiff between checkpointed version and current version of the given notebook
|
||||
USER root
|
||||
WORKDIR /
|
||||
RUN conda install -y -c conda-forge nbdime
|
||||
USER ${username}
|
||||
WORKDIR ${workdir}
|
||||
|
||||
RUN git-nbdiffdriver config --enable --global
|
||||
|
||||
# INFO: Optionally uncomment any (one) of the following RUN commands below to ignore either
|
||||
# metadata or details in nbdiff within git diff
|
||||
#RUN git config --global diff.jupyternotebook.command 'git-nbdiffdriver diff --ignore-metadata'
|
||||
RUN git config --global diff.jupyternotebook.command 'git-nbdiffdriver diff --ignore-details'
|
||||
|
||||
|
||||
# INFO: Dirty nbdime patching (ignored if not matching)
|
||||
COPY docker/nbdime-*.patch /tmp/
|
||||
USER root
|
||||
WORKDIR /
|
||||
RUN patch -d /opt/conda/lib/python3.6/site-packages -p1 --forward --reject-file=- < \
|
||||
/tmp/nbdime-1-details.patch || true \
|
||||
&& patch -d /opt/conda/lib/python3.6/site-packages -p1 --forward --reject-file=- < \
|
||||
/tmp/nbdime-2-toc.patch || true
|
||||
RUN rm /tmp/nbdime-*.patch
|
||||
USER ${username}
|
||||
WORKDIR ${workdir}
|
||||
|
||||
|
||||
COPY docker/bashrc.bash /tmp/
|
||||
RUN cat /tmp/bashrc.bash >> ${home}/.bashrc
|
||||
RUN echo "export PATH=\"${workdir}/docker/bin:$PATH\"" >> ${home}/.bashrc
|
||||
RUN sudo rm /tmp/bashrc.bash
|
||||
|
||||
|
||||
# INFO: Uncomment lines below to enable automatic save of python-only and html-only
|
||||
# exports alongside the notebook
|
||||
#COPY docker/jupyter_notebook_config.py /tmp/
|
||||
#RUN cat /tmp/jupyter_notebook_config.py >> ${home}/.jupyter/jupyter_notebook_config.py
|
||||
#RUN sudo rm /tmp/jupyter_notebook_config.py
|
||||
|
||||
# INFO: Uncomment the RUN command below to disable git diff paging
|
||||
#RUN git config --global core.pager ''
|
||||
|
||||
# INFO: Uncomment the RUN command below for easy and constant notebook URL (just localhost:8888)
|
||||
# That will switch jupyter to using empty password instead of a token.
|
||||
# To avoid making a security hole you SHOULD in fact not only uncomment but
|
||||
|
@ -38,34 +92,6 @@ RUN jupyter nbextension enable toc2/main
|
|||
# from notebook.auth import passwd
|
||||
# passwd()
|
||||
# and take the hash from the output
|
||||
#RUN mkdir -p ${HOME}/.jupyter && \
|
||||
# echo 'c.NotebookApp.password = u"sha1:c6bbcba2d04b:f969e403db876dcfbe26f47affe41909bd53392e"' \
|
||||
# >> ${HOME}/.jupyter/jupyter_notebook_config.py
|
||||
|
||||
# INFO: Uncomment the RUN command below to disable git diff paging
|
||||
#RUN git config --global core.pager ''
|
||||
|
||||
|
||||
# INFO: Below - work in progress, nbdime not totally integrated, still it enables diffing
|
||||
# notebooks with nbdiff (and nbdiff support in git diff command) after connecting to
|
||||
# the container by "make exec" (docker exec)
|
||||
# Try:
|
||||
# nbd NOTEBOOK_NAME.ipynb
|
||||
# to get nbdiff between checkpointed version and current version of the given notebook
|
||||
USER root
|
||||
WORKDIR /
|
||||
|
||||
RUN conda install -y -c conda-forge nbdime
|
||||
|
||||
USER ${username}
|
||||
WORKDIR ${HOME}/handson-ml
|
||||
|
||||
RUN git-nbdiffdriver config --enable --global
|
||||
|
||||
# INFO: Uncomment the RUN command below to ignore metadata in nbdiff within git diff
|
||||
#RUN git config --global diff.jupyternotebook.command 'git-nbdiffdriver diff --ignore-metadata'
|
||||
|
||||
|
||||
COPY docker/bashrc /tmp/bashrc
|
||||
RUN cat /tmp/bashrc >> ${HOME}/.bashrc
|
||||
RUN sudo rm -rf /tmp/bashrc
|
||||
#RUN mkdir -p ${home}/.jupyter && \
|
||||
# echo 'c.NotebookApp.password = u"sha1:c6bbcba2d04b:f969e403db876dcfbe26f47affe41909bd53392e"' \
|
||||
# >> ${home}/.jupyter/jupyter_notebook_config.py
|
||||
|
|
|
@ -4,7 +4,7 @@ help:
|
|||
run:
|
||||
docker-compose up
|
||||
exec:
|
||||
docker-compose exec handson-ml /bin/bash
|
||||
docker-compose exec handson-ml bash
|
||||
build: stop .FORCE
|
||||
docker-compose build
|
||||
rebuild: stop .FORCE
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
|
||||
# Hands-on Machine Learning in Docker :-)
|
||||
# Hands-on Machine Learning in Docker
|
||||
|
||||
This is the Docker configuration which allows you to run and tweak the book's notebooks without installing any dependencies on your machine!<br/>
|
||||
OK, any except `docker`. With `docker-compose`. Well, you may also want `make` (but it is only used as thin layer to call a few simple `docker-compose` commands).
|
||||
|
@ -32,7 +32,9 @@ You can close the server just by pressing `Ctrl-C` in terminal window.
|
|||
|
||||
Run `make exec` (or `docker-compose exec handson-ml bash`) while the server is running to run an additional `bash` shell inside the `handson-ml` container. Now you're inside the environment prepared within the image.
|
||||
|
||||
One of the usefull things that can be done there may be comparing versions of the notebooks using the `nbdiff` command if you haven't got `nbdime` installed locally (it is **way** better than plain `diff` for notebooks). See [Tools for diffing and merging of Jupyter notebooks](https://github.com/jupyter/nbdime) for more details.
|
||||
One of the usefull things that can be done there would be starting TensorBoard (for example with simple `tb` command, see bashrc file).
|
||||
|
||||
Another one may be comparing versions of the notebooks using the `nbdiff` command if you haven't got `nbdime` installed locally (it is **way** better than plain `diff` for notebooks). See [Tools for diffing and merging of Jupyter notebooks](https://github.com/jupyter/nbdime) for more details.
|
||||
|
||||
You can see changes you made relative to the version in git using `git diff` which is integrated with `nbdiff`.
|
||||
|
||||
|
|
|
@ -1,12 +0,0 @@
|
|||
alias ll="ls -l"
|
||||
|
||||
nbd() {
|
||||
DIRNAME=$(dirname "$1")
|
||||
BASENAME=$(basename "$1" .ipynb)
|
||||
|
||||
WORKING_COPY=$DIRNAME/$BASENAME.ipynb
|
||||
CHECKPOINT_COPY=$DIRNAME/.ipynb_checkpoints/$BASENAME-checkpoint.ipynb
|
||||
|
||||
# echo "How change $CHECKPOINT_COPY into $WORKING_COPY"
|
||||
nbdiff "$CHECKPOINT_COPY" "$WORKING_COPY"
|
||||
}
|
|
@ -0,0 +1,3 @@
|
|||
alias ll="ls -alF"
|
||||
alias nbd="nbdiff_checkpoint"
|
||||
alias tb="tensorboard --logdir=tf_logs"
|
|
@ -0,0 +1,116 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import collections
|
||||
import glob
|
||||
import hashlib
|
||||
import os
|
||||
import subprocess
|
||||
|
||||
|
||||
class NotebookAnalyser:
|
||||
|
||||
def __init__(self, dry_run=False, verbose=False, colorful=False):
|
||||
self._dry_run = dry_run
|
||||
self._verbose = verbose
|
||||
self._colors = collections.defaultdict(lambda: "")
|
||||
if colorful:
|
||||
for color in [
|
||||
NotebookAnalyser.COLOR_WHITE,
|
||||
NotebookAnalyser.COLOR_RED,
|
||||
NotebookAnalyser.COLOR_GREEN,
|
||||
NotebookAnalyser.COLOR_YELLOW,
|
||||
]:
|
||||
self._colors[color] = "\033[{}m".format(color)
|
||||
|
||||
NOTEBOOK_SUFFIX = ".ipynb"
|
||||
CHECKPOINT_DIR = NOTEBOOK_SUFFIX + "_checkpoints"
|
||||
CHECKPOINT_MASK = "*-checkpoint" + NOTEBOOK_SUFFIX
|
||||
CHECKPOINT_MASK_LEN = len(CHECKPOINT_MASK) - 1
|
||||
|
||||
@staticmethod
|
||||
def get_hash(file_path):
|
||||
with open(file_path, "rb") as input:
|
||||
hash = hashlib.md5()
|
||||
for chunk in iter(lambda: input.read(4096), b""):
|
||||
hash.update(chunk)
|
||||
return hash.hexdigest()
|
||||
|
||||
MESSAGE_ORPHANED = "missing "
|
||||
MESSAGE_MODIFIED = "modified"
|
||||
MESSAGE_DELETED = "DELETING"
|
||||
|
||||
COLOR_WHITE = "0"
|
||||
COLOR_RED = "31"
|
||||
COLOR_GREEN = "32"
|
||||
COLOR_YELLOW = "33"
|
||||
|
||||
def log(self, message, file, color=COLOR_WHITE):
|
||||
color_on = self._colors[color]
|
||||
color_off = self._colors[NotebookAnalyser.COLOR_WHITE]
|
||||
print("{}{}{}: {}".format(color_on, message, color_off, file))
|
||||
|
||||
def clean_checkpoints(self, directory):
|
||||
for checkpoint_path in sorted(glob.glob(os.path.join(directory, NotebookAnalyser.CHECKPOINT_MASK))):
|
||||
|
||||
workfile_dir = os.path.dirname(os.path.dirname(checkpoint_path))
|
||||
workfile_name = os.path.basename(checkpoint_path)[:-NotebookAnalyser.CHECKPOINT_MASK_LEN] + NotebookAnalyser.NOTEBOOK_SUFFIX
|
||||
workfile_path = os.path.join(workfile_dir, workfile_name)
|
||||
|
||||
status = ""
|
||||
if not os.path.isfile(workfile_path):
|
||||
if self._verbose:
|
||||
self.log(NotebookAnalyser.MESSAGE_ORPHANED, workfile_path, NotebookAnalyser.COLOR_RED)
|
||||
else:
|
||||
checkpoint_stat = os.stat(checkpoint_path)
|
||||
workfile_stat = os.stat(workfile_path)
|
||||
|
||||
modified = workfile_stat.st_size != checkpoint_stat.st_size
|
||||
|
||||
if not modified:
|
||||
checkpoint_hash = NotebookAnalyser.get_hash(checkpoint_path)
|
||||
workfile_hash = NotebookAnalyser.get_hash(workfile_path)
|
||||
modified = checkpoint_hash != workfile_hash
|
||||
|
||||
if modified:
|
||||
if self._verbose:
|
||||
self.log(NotebookAnalyser.MESSAGE_MODIFIED, workfile_path, NotebookAnalyser.COLOR_YELLOW)
|
||||
else:
|
||||
self.log(NotebookAnalyser.MESSAGE_DELETED, checkpoint_path, NotebookAnalyser.COLOR_GREEN)
|
||||
if not self._dry_run:
|
||||
os.remove(checkpoint_path)
|
||||
|
||||
if not self._dry_run and not os.listdir(directory):
|
||||
self.log(NotebookAnalyser.MESSAGE_DELETED, directory, NotebookAnalyser.COLOR_GREEN)
|
||||
os.rmdir(directory)
|
||||
|
||||
def clean_checkpoints_recursively(self, directory):
|
||||
for (root, subdirs, files) in os.walk(directory):
|
||||
subdirs.sort() # INFO: traverse alphabetically
|
||||
if NotebookAnalyser.CHECKPOINT_DIR in subdirs:
|
||||
subdirs.remove(NotebookAnalyser.CHECKPOINT_DIR) # INFO: don't recurse there
|
||||
self.clean_checkpoints(os.path.join(root, NotebookAnalyser.CHECKPOINT_DIR))
|
||||
|
||||
|
||||
def main():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description="Remove checkpointed versions of those jupyter notebooks that are identical to their working copies.",
|
||||
epilog="""Notebooks will be reported as either
|
||||
"DELETED" if the working copy and checkpointed version are identical
|
||||
(checkpoint will be deleted),
|
||||
"missing" if there is a checkpoint but no corresponding working file can be found
|
||||
or "modified" if notebook and the checkpoint are not byte-to-byte identical.
|
||||
If removal of checkpoints results in empty ".ipynb_checkpoints" directory
|
||||
that directory is also deleted.
|
||||
""") #, formatter_class=argparse.RawDescriptionHelpFormatter)
|
||||
parser.add_argument("dirs", metavar="DIR", type=str, nargs="*", default=".", help="directories to search")
|
||||
parser.add_argument("-d", "--dry-run", action="store_true", help="only print messages, don't perform any removals")
|
||||
parser.add_argument("-v", "--verbose", action="store_true", help="verbose mode")
|
||||
parser.add_argument("-c", "--color", action="store_true", help="colorful mode")
|
||||
args = parser.parse_args()
|
||||
|
||||
analyser = NotebookAnalyser(args.dry_run, args.verbose, args.color)
|
||||
for directory in args.dirs:
|
||||
analyser.clean_checkpoints_recursively(directory)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,17 @@
|
|||
#!/bin/bash
|
||||
if [[ "$#" -lt 1 || "$1" =~ ^((-h)|(--help))$ ]] ; then
|
||||
echo "usage: nbdiff_checkpoint NOTEBOOK.ipynb"
|
||||
echo
|
||||
echo "Show differences between given jupyter notebook and its checkpointed version (in .ipynb_checkpoints subdirectory)"
|
||||
exit
|
||||
fi
|
||||
|
||||
DIRNAME=$(dirname "$1")
|
||||
BASENAME=$(basename "$1" .ipynb)
|
||||
shift
|
||||
|
||||
WORKING_COPY=$DIRNAME/$BASENAME.ipynb
|
||||
CHECKPOINT_COPY=$DIRNAME/.ipynb_checkpoints/$BASENAME-checkpoint.ipynb
|
||||
|
||||
echo "----- Analysing how to change $CHECKPOINT_COPY into $WORKING_COPY -----"
|
||||
nbdiff "$CHECKPOINT_COPY" "$WORKING_COPY" --ignore-details "$@"
|
|
@ -0,0 +1,54 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import os
|
||||
|
||||
def remove_empty_directories(initial_dir,
|
||||
allow_initial_delete=False, ignore_nonexistant_initial=False,
|
||||
dry_run=False, quiet=False):
|
||||
|
||||
FORBIDDEN_SUBDIRS = set([".git"])
|
||||
|
||||
if not os.path.isdir(initial_dir) and not ignore_nonexistant_initial:
|
||||
raise RuntimeError("Initial directory '{}' not found!".format(initial_dir))
|
||||
|
||||
message = "removed"
|
||||
if dry_run:
|
||||
message = "to be " + message
|
||||
|
||||
deleted = set()
|
||||
|
||||
for (directory, subdirs, files) in os.walk(initial_dir, topdown=False):
|
||||
forbidden = False
|
||||
parent = directory
|
||||
while parent:
|
||||
parent, dirname = os.path.split(parent)
|
||||
if dirname in FORBIDDEN_SUBDIRS:
|
||||
forbidden = True
|
||||
break
|
||||
if forbidden:
|
||||
continue
|
||||
|
||||
is_empty = len(files) < 1 and len(set([os.path.join(directory, s) for s in subdirs]) - deleted) < 1
|
||||
|
||||
if is_empty and (initial_dir != directory or allow_initial_delete):
|
||||
if not quiet:
|
||||
print("{}: {}".format(message, directory))
|
||||
deleted.add(directory)
|
||||
if not dry_run:
|
||||
os.rmdir(directory)
|
||||
|
||||
def main():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description="Remove empty directories recursively in subtree.")
|
||||
parser.add_argument("dir", metavar="DIR", type=str, nargs="+", help="directory to be searched")
|
||||
parser.add_argument("-r", "--allow-dir-removal", action="store_true", help="allow deletion of DIR itself")
|
||||
parser.add_argument("-i", "--ignore-nonexistent-dir", action="store_true", help="don't throw an error if DIR doesn't exist")
|
||||
parser.add_argument("-d", "--dry-run", action="store_true", help="only print messages, don't perform any removals")
|
||||
parser.add_argument("-q", "--quiet", action="store_true", help="don't print names of directories being removed")
|
||||
args = parser.parse_args()
|
||||
for directory in args.dir:
|
||||
remove_empty_directories(directory, args.allow_dir_removal, args.ignore_nonexistent_dir,
|
||||
args.dry_run, args.quiet)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,2 @@
|
|||
#!/bin/bash
|
||||
python -m tensorboard.main "$@"
|
|
@ -15,6 +15,7 @@ services:
|
|||
max-size: 50m
|
||||
ports:
|
||||
- "8888:8888"
|
||||
- "6006:6006"
|
||||
volumes:
|
||||
- ../:/home/devel/handson-ml
|
||||
command: /opt/conda/bin/jupyter notebook --ip='*' --port=8888 --no-browser
|
||||
|
|
|
@ -0,0 +1,15 @@
|
|||
import os
|
||||
import subprocess
|
||||
|
||||
def export_script_and_view(model, os_path, contents_manager):
|
||||
if model["type"] != "notebook":
|
||||
return
|
||||
dir_name, file_name = os.path.split(os_path)
|
||||
file_base, file_ext = os.path.splitext(file_name)
|
||||
if file_base.startswith("Untitled"):
|
||||
return
|
||||
export_name = file_base if file_ext == ".ipynb" else file_name
|
||||
subprocess.check_call(["jupyter", "nbconvert", "--to", "script", file_name, "--output", export_name + "_script"], cwd=dir_name)
|
||||
subprocess.check_call(["jupyter", "nbconvert", "--to", "html", file_name, "--output", export_name + "_view"], cwd=dir_name)
|
||||
|
||||
c.FileContentsManager.post_save_hook = export_script_and_view
|
|
@ -0,0 +1,17 @@
|
|||
--- a/nbdime/diffing/notebooks.py
|
||||
+++ b/nbdime/diffing/notebooks.py
|
||||
@@ -548,8 +548,12 @@ def set_notebook_diff_targets(sources=True, outputs=True, attachments=True, meta
|
||||
metadata_keys = ("/cells/*/metadata", "/metadata", "/cells/*/outputs/*/metadata")
|
||||
if metadata:
|
||||
for key in metadata_keys:
|
||||
- if key in notebook_differs:
|
||||
- del notebook_differs[key]
|
||||
+ if details:
|
||||
+ if key in notebook_differs:
|
||||
+ del notebook_differs[key]
|
||||
+ else:
|
||||
+ notebook_differs[key] = diff_ignore_keys(
|
||||
+ inner_differ=diff, ignore_keys=['collapsed', 'autoscroll', 'deletable', 'editable'])
|
||||
else:
|
||||
for key in metadata_keys:
|
||||
notebook_differs[key] = diff_ignore
|
|
@ -0,0 +1,11 @@
|
|||
--- a/nbdime/diffing/notebooks.py
|
||||
+++ b/nbdime/diffing/notebooks.py
|
||||
@@ -553,7 +553,7 @@
|
||||
del notebook_differs[key]
|
||||
else:
|
||||
notebook_differs[key] = diff_ignore_keys(
|
||||
- inner_differ=diff, ignore_keys=['collapsed', 'autoscroll', 'deletable', 'editable'])
|
||||
+ inner_differ=diff, ignore_keys=['toc', 'collapsed', 'autoscroll', 'deletable', 'editable'])
|
||||
else:
|
||||
for key in metadata_keys:
|
||||
notebook_differs[key] = diff_ignore
|
|
@ -32,7 +32,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Watch [this video](https://www.youtube.com/embed/pPN8d0E3900) to understand the key ideas behind Capsule Networks:"
|
||||
"Watch [this video](https://youtu.be/pPN8d0E3900) to understand the key ideas behind Capsule Networks:"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -42,12 +42,23 @@
|
|||
"outputs": [],
|
||||
"source": [
|
||||
"from IPython.display import HTML\n",
|
||||
"\n",
|
||||
"# Display the video in an iframe:\n",
|
||||
"HTML(\"\"\"<iframe width=\"560\" height=\"315\"\n",
|
||||
" src=\"https://www.youtube.com/embed/pPN8d0E3900\"\n",
|
||||
" frameborder=\"0\"\n",
|
||||
" allowfullscreen></iframe>\"\"\")"
|
||||
"HTML(\"\"\"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/pPN8d0E3900\" frameborder=\"0\" allowfullscreen></iframe>\"\"\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You may also want to watch [this video](https://youtu.be/2Kawrd5szHE), which presents the main difficulties in this notebook:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"HTML(\"\"\"<iframe width=\"560\" height=\"315\" src=\"https://www.youtube.com/embed/2Kawrd5szHE\" frameborder=\"0\" allowfullscreen></iframe>\"\"\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -66,10 +77,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from __future__ import division, print_function, unicode_literals"
|
||||
|
@ -84,10 +93,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%matplotlib inline\n",
|
||||
|
@ -104,10 +111,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
|
@ -130,10 +135,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tf.reset_default_graph()"
|
||||
|
@ -148,10 +151,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"np.random.seed(42)\n",
|
||||
|
@ -174,7 +175,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -192,7 +193,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -217,7 +218,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -275,10 +276,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X = tf.placeholder(shape=[None, 28, 28, 1], dtype=tf.float32, name=\"X\")"
|
||||
|
@ -300,10 +299,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"caps1_n_maps = 32\n",
|
||||
|
@ -320,10 +317,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"conv1_params = {\n",
|
||||
|
@ -345,10 +340,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"conv1 = tf.layers.conv2d(X, name=\"conv1\", **conv1_params)\n",
|
||||
|
@ -371,10 +364,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"caps1_raw = tf.reshape(conv2, [-1, caps1_n_caps, caps1_n_dims],\n",
|
||||
|
@ -396,10 +387,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def squash(s, axis=-1, epsilon=1e-7, name=None):\n",
|
||||
|
@ -421,10 +410,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"caps1_output = squash(caps1_raw, name=\"caps1_output\")"
|
||||
|
@ -467,10 +454,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"caps2_n_caps = 10\n",
|
||||
|
@ -510,6 +495,7 @@
|
|||
"metadata": {},
|
||||
"source": [
|
||||
"We can apply this function to compute $\\hat{\\mathbf{u}}_{j|i}$ for every pair of capsules ($i$, $j$) like this (recall that there are 6×6×32=1152 capsules in the first layer, and 10 in the second layer):\n",
|
||||
"\n",
|
||||
"$\n",
|
||||
"\\pmatrix{\n",
|
||||
" \\mathbf{W}_{1,1} & \\mathbf{W}_{1,2} & \\cdots & \\mathbf{W}_{1,10} \\\\\n",
|
||||
|
@ -551,18 +537,16 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Okay, let's start by creating a trainable variable of shape (1, 1152, 10, 16, 8) that will hold all the transformation matrices. The first dimension of size 1 will make this array easy to tile. We initialize this variable randomly using a normal distribution with a standard deviation to 0.01."
|
||||
"Okay, let's start by creating a trainable variable of shape (1, 1152, 10, 16, 8) that will hold all the transformation matrices. The first dimension of size 1 will make this array easy to tile. We initialize this variable randomly using a normal distribution with a standard deviation to 0.1."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"init_sigma = 0.01\n",
|
||||
"init_sigma = 0.1\n",
|
||||
"\n",
|
||||
"W_init = tf.random_normal(\n",
|
||||
" shape=(1, caps1_n_caps, caps2_n_caps, caps2_n_dims, caps1_n_dims),\n",
|
||||
|
@ -579,10 +563,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"batch_size = tf.shape(X)[0]\n",
|
||||
|
@ -598,10 +580,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"caps1_output_expanded = tf.expand_dims(caps1_output, -1,\n",
|
||||
|
@ -621,7 +601,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -637,7 +617,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -653,10 +633,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 24,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"caps2_predicted = tf.matmul(W_tiled, caps1_output_tiled,\n",
|
||||
|
@ -672,7 +650,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -702,10 +680,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 26,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"raw_weights = tf.zeros([batch_size, caps1_n_caps, caps2_n_caps, 1, 1],\n",
|
||||
|
@ -735,10 +711,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 26,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 27,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"routing_weights = tf.nn.softmax(raw_weights, dim=2, name=\"routing_weights\")"
|
||||
|
@ -753,10 +727,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 28,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"weighted_predictions = tf.multiply(routing_weights, caps2_predicted,\n",
|
||||
|
@ -785,10 +757,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 29,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"caps2_output_round_1 = squash(weighted_sum, axis=-2,\n",
|
||||
|
@ -797,7 +767,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"execution_count": 30,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -841,7 +811,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"execution_count": 31,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -857,7 +827,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"execution_count": 32,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -873,10 +843,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 33,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"caps2_output_round_1_tiled = tf.tile(\n",
|
||||
|
@ -893,10 +861,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 33,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 34,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"agreement = tf.matmul(caps2_predicted, caps2_output_round_1_tiled,\n",
|
||||
|
@ -912,10 +878,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 34,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 35,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"raw_weights_round_2 = tf.add(raw_weights, agreement,\n",
|
||||
|
@ -931,10 +895,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 35,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 36,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"routing_weights_round_2 = tf.nn.softmax(raw_weights_round_2,\n",
|
||||
|
@ -960,10 +922,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 36,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 37,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"caps2_output = caps2_output_round_2"
|
||||
|
@ -991,7 +951,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 37,
|
||||
"execution_count": 38,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -1031,7 +991,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 38,
|
||||
"execution_count": 39,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -1061,10 +1021,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 39,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 40,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def safe_norm(s, axis=-1, epsilon=1e-7, keep_dims=False, name=None):\n",
|
||||
|
@ -1076,10 +1034,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 40,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 41,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_proba = safe_norm(caps2_output, axis=-2, name=\"y_proba\")"
|
||||
|
@ -1094,10 +1050,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 41,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 42,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_proba_argmax = tf.argmax(y_proba, axis=2, name=\"y_proba\")"
|
||||
|
@ -1112,7 +1066,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 42,
|
||||
"execution_count": 43,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -1128,10 +1082,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 43,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 44,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_pred = tf.squeeze(y_proba_argmax, axis=[1,2], name=\"y_pred\")"
|
||||
|
@ -1139,7 +1091,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 44,
|
||||
"execution_count": 45,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -1169,10 +1121,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 45,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 46,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y = tf.placeholder(shape=[None], dtype=tf.int64, name=\"y\")"
|
||||
|
@ -1191,7 +1141,7 @@
|
|||
"source": [
|
||||
"The paper uses a special margin loss to make it possible to detect two or more different digits in each image:\n",
|
||||
"\n",
|
||||
"$ L_k = T_k \\max(0, m^{+} - \\|\\mathbf{v}_k\\|)^2 - \\lambda (1 - T_k) \\max(0, \\|\\mathbf{v}_k\\| - m^{-})^2$\n",
|
||||
"$ L_k = T_k \\max(0, m^{+} - \\|\\mathbf{v}_k\\|)^2 + \\lambda (1 - T_k) \\max(0, \\|\\mathbf{v}_k\\| - m^{-})^2$\n",
|
||||
"\n",
|
||||
"* $T_k$ is equal to 1 if the digit of class $k$ is present, or 0 otherwise.\n",
|
||||
"* In the paper, $m^{+} = 0.9$, $m^{-} = 0.1$ and $\\lambda = 0.5$.\n",
|
||||
|
@ -1200,10 +1150,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 46,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 47,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"m_plus = 0.9\n",
|
||||
|
@ -1220,10 +1168,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 47,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 48,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"T = tf.one_hot(y, depth=caps2_n_caps, name=\"T\")"
|
||||
|
@ -1238,7 +1184,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 48,
|
||||
"execution_count": 49,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -1255,7 +1201,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 49,
|
||||
"execution_count": 50,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -1271,10 +1217,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 50,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 51,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"caps2_output_norm = safe_norm(caps2_output, axis=-2, keep_dims=True,\n",
|
||||
|
@ -1290,10 +1234,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 51,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 52,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"present_error_raw = tf.square(tf.maximum(0., m_plus - caps2_output_norm),\n",
|
||||
|
@ -1311,10 +1253,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 52,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 53,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"absent_error_raw = tf.square(tf.maximum(0., caps2_output_norm - m_minus),\n",
|
||||
|
@ -1332,10 +1272,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 53,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 54,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"L = tf.add(T * present_error, lambda_ * (1.0 - T) * absent_error,\n",
|
||||
|
@ -1351,10 +1289,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 54,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 55,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"margin_loss = tf.reduce_mean(tf.reduce_sum(L, axis=1), name=\"margin_loss\")"
|
||||
|
@ -1397,10 +1333,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 55,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 56,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"mask_with_labels = tf.placeholder_with_default(False, shape=(),\n",
|
||||
|
@ -1416,10 +1350,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 56,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 57,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reconstruction_targets = tf.cond(mask_with_labels, # condition\n",
|
||||
|
@ -1446,10 +1378,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 57,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 58,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reconstruction_mask = tf.one_hot(reconstruction_targets,\n",
|
||||
|
@ -1466,7 +1396,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 58,
|
||||
"execution_count": 59,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -1482,7 +1412,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 59,
|
||||
"execution_count": 60,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -1498,10 +1428,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 60,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 61,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"reconstruction_mask_reshaped = tf.reshape(\n",
|
||||
|
@ -1518,10 +1446,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 61,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 62,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"caps2_output_masked = tf.multiply(\n",
|
||||
|
@ -1531,7 +1457,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 62,
|
||||
"execution_count": 63,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -1547,10 +1473,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 63,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 64,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"decoder_input = tf.reshape(caps2_output_masked,\n",
|
||||
|
@ -1567,7 +1491,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 64,
|
||||
"execution_count": 65,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -1590,10 +1514,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 65,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 66,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"n_hidden1 = 512\n",
|
||||
|
@ -1603,10 +1525,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 66,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 67,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with tf.name_scope(\"decoder\"):\n",
|
||||
|
@ -1637,16 +1557,14 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 67,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 68,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"X_flat = tf.reshape(X, [-1, n_output], name=\"X_flat\")\n",
|
||||
"squared_difference = tf.square(X_flat - decoder_output,\n",
|
||||
" name=\"squared_difference\")\n",
|
||||
"reconstruction_loss = tf.reduce_sum(squared_difference,\n",
|
||||
"reconstruction_loss = tf.reduce_mean(squared_difference,\n",
|
||||
" name=\"reconstruction_loss\")"
|
||||
]
|
||||
},
|
||||
|
@ -1666,10 +1584,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 68,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 69,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"alpha = 0.0005\n",
|
||||
|
@ -1700,10 +1616,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 69,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 70,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"correct = tf.equal(y, y_pred, name=\"correct\")\n",
|
||||
|
@ -1726,10 +1640,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 70,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 71,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"optimizer = tf.train.AdamOptimizer()\n",
|
||||
|
@ -1752,10 +1664,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 71,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 72,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"init = tf.global_variables_initializer()\n",
|
||||
|
@ -1792,7 +1702,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 72,
|
||||
"execution_count": 73,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -1858,7 +1768,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Training is finished, we reached over 99.3% accuracy on the validation set after just 5 epochs, things are looking good. Now let's evaluate the model on the test set."
|
||||
"Training is finished, we reached over 99.4% accuracy on the validation set after just 5 epochs, things are looking good. Now let's evaluate the model on the test set."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -1870,7 +1780,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 73,
|
||||
"execution_count": 74,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -1903,7 +1813,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We reach 99.43% accuracy on the test set. Pretty nice. :)"
|
||||
"We reach 99.53% accuracy on the test set. Pretty nice. :)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -1922,7 +1832,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 74,
|
||||
"execution_count": 75,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -1954,7 +1864,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 75,
|
||||
"execution_count": 76,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -2010,7 +1920,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 76,
|
||||
"execution_count": 77,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -2026,10 +1936,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 77,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 78,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def tweak_pose_parameters(output_vectors, min=-0.5, max=0.5, n_steps=11):\n",
|
||||
|
@ -2050,10 +1958,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 78,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 79,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"n_steps = 11\n",
|
||||
|
@ -2072,7 +1978,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 79,
|
||||
"execution_count": 80,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -2096,10 +2002,8 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 80,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": 81,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tweak_reconstructions = decoder_output_value.reshape(\n",
|
||||
|
@ -2115,7 +2019,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 81,
|
||||
"execution_count": 82,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -2149,9 +2053,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
|
@ -2172,7 +2074,7 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.2"
|
||||
"version": "3.6.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
|
|
@ -459,7 +459,7 @@
|
|||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"NumPy first creates three `ndarrays` (one per dimension), each of shape `(3, 2, 10)`. Each array has values equal to the coordinate along a specific axis. For example, all elements in the `z` array are equal to their z-coordinate:\n",
|
||||
"NumPy first creates three `ndarrays` (one per dimension), each of shape `(2, 10)`. Each array has values equal to the coordinate along a specific axis. For example, all elements in the `z` array are equal to their z-coordinate:\n",
|
||||
"\n",
|
||||
" [[[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n",
|
||||
" [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]\n",
|
||||
|
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue