Add dual=True to LinearSVC and parser='auto' to fetch_openml

main
Aurélien Geron 2023-11-14 12:57:41 +13:00
parent e31ce8a44c
commit d67673a290
1 changed files with 12 additions and 4 deletions

View File

@ -636,7 +636,8 @@
"\n",
"from sklearn.datasets import fetch_openml\n",
"\n",
"X_mnist, y_mnist = fetch_openml('mnist_784', return_X_y=True, as_frame=False)\n",
"X_mnist, y_mnist = fetch_openml('mnist_784', return_X_y=True, as_frame=False,\n",
" parser='auto')\n",
"\n",
"rnd_clf = RandomForestClassifier(n_estimators=100, random_state=42)\n",
"rnd_clf.fit(X_mnist, y_mnist)\n",
@ -1305,6 +1306,13 @@
"from sklearn.neural_network import MLPClassifier"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: The `LinearSVC` has a `dual` hyperparameter whose default value will change from `True` to `\"auto\"` in Scikit-Learn 1.5. To ensure this notebook continues to produce the same outputs, I'm setting it explicitly to `True`. Please see the [documentation](https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html) for more details."
]
},
{
"cell_type": "code",
"execution_count": 42,
@ -1313,7 +1321,7 @@
"source": [
"random_forest_clf = RandomForestClassifier(n_estimators=100, random_state=42)\n",
"extra_trees_clf = ExtraTreesClassifier(n_estimators=100, random_state=42)\n",
"svm_clf = LinearSVC(max_iter=100, tol=20, random_state=42)\n",
"svm_clf = LinearSVC(max_iter=100, tol=20, dual=True, random_state=42)\n",
"mlp_clf = MLPClassifier(random_state=42)"
]
},
@ -2045,7 +2053,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@ -2059,7 +2067,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.10.13"
},
"nav_menu": {
"height": "252px",