Add Dockerfile.gpu for GPU support

main
Aurélien Geron 2021-03-03 22:19:27 +13:00
parent abd75d7fd7
commit d6c2ba1b8f
4 changed files with 265 additions and 4 deletions

View File

@ -2,12 +2,20 @@ FROM continuumio/miniconda3:latest
RUN apt-get update && apt-get upgrade -y \
&& apt-get install -y \
libpq-dev \
build-essential \
cmake \
ffmpeg \
git \
libboost-all-dev \
libjpeg-dev \
libpq-dev \
libsdl2-dev swig \
sudo \
cmake zlib1g-dev libjpeg-dev xvfb ffmpeg xorg-dev libboost-all-dev libsdl2-dev swig \
unzip zip \
unzip \
xorg-dev \
xvfb \
zip \
zlib1g-dev \
&& rm -rf /var/lib/apt/lists/*
COPY environment.yml /tmp/

195
docker/Dockerfile.gpu Normal file
View File

@ -0,0 +1,195 @@
# This Dockerfile includes sections from tensorflow/tensorflow:latest-gpu's Dockerfile:
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/dockerfiles/dockerfiles/gpu.Dockerfile
# and sections from continuumio/miniconda3:latest's Dockerfile:
# https://github.com/ContinuumIO/docker-images/blob/master/miniconda3/debian/Dockerfile
# First we need CUDA and everything else needed to support GPUs
###############################################
#### FROM tensorflow/tensorflow:latest-gpu ####
###############################################
ARG UBUNTU_VERSION=18.04
ARG ARCH=
ARG CUDA=11.0
FROM nvidia/cuda${ARCH:+-$ARCH}:${CUDA}-base-ubuntu${UBUNTU_VERSION} as base
# ARCH and CUDA are specified again because the FROM directive resets ARGs
# (but their default value is retained if set previously)
ARG ARCH
ARG CUDA
ARG CUDNN=8.0.4.30-1
ARG CUDNN_MAJOR_VERSION=8
ARG LIB_DIR_PREFIX=x86_64
ARG LIBNVINFER=7.1.3-1
ARG LIBNVINFER_MAJOR_VERSION=7
# Needed for string substitution
SHELL ["/bin/bash", "-c"]
# Pick up some TF dependencies
# [HOML2] Tweaked for handson-ml2: added all the libs before build-essentials
RUN apt-get update -q && apt-get install -q -y --no-install-recommends \
bzip2 \
ca-certificates \
cmake \
ffmpeg \
git \
libboost-all-dev \
libglib2.0-0 \
libjpeg-dev \
libpq-dev \
libsdl2-dev \
libsm6 \
libxext6 \
libxrender1 \
mercurial \
subversion \
sudo \
swig \
wget \
xorg-dev \
xvfb \
zip \
zlib1g-dev \
build-essential \
cuda-command-line-tools-${CUDA/./-} \
libcublas-${CUDA/./-} \
cuda-nvrtc-${CUDA/./-} \
libcufft-${CUDA/./-} \
libcurand-${CUDA/./-} \
libcusolver-${CUDA/./-} \
libcusparse-${CUDA/./-} \
curl \
libcudnn8=${CUDNN}+cuda${CUDA} \
libfreetype6-dev \
libhdf5-serial-dev \
libzmq3-dev \
pkg-config \
software-properties-common \
unzip
# Install TensorRT if not building for PowerPC
RUN [[ "${ARCH}" = "ppc64le" ]] || { apt-get update && \
apt-get install -y --no-install-recommends libnvinfer${LIBNVINFER_MAJOR_VERSION}=${LIBNVINFER}+cuda${CUDA} \
libnvinfer-plugin${LIBNVINFER_MAJOR_VERSION}=${LIBNVINFER}+cuda${CUDA} \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*; }
# For CUDA profiling, TensorFlow requires CUPTI.
ENV LD_LIBRARY_PATH /usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/lib64:$LD_LIBRARY_PATH
# Link the libcuda stub to the location where tensorflow is searching for it and reconfigure
# dynamic linker run-time bindings
RUN ln -s /usr/local/cuda/lib64/stubs/libcuda.so /usr/local/cuda/lib64/stubs/libcuda.so.1 \
&& echo "/usr/local/cuda/lib64/stubs" > /etc/ld.so.conf.d/z-cuda-stubs.conf \
&& ldconfig
# [HOML2] Tweaked for handson-ml2: removed Python3 & TensorFlow installation using pip
#################################################
#### End of tensorflow/tensorflow:latest-gpu ####
#################################################
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
ENV PATH /opt/conda/bin:/opt/conda/envs/tf2/bin:$PATH
# Next we need to install miniconda
############################################
#### FROM continuumio/miniconda3:latest ####
############################################
# [HOML2] Tweaked for handson-ml2: removed the beginning of the Dockerfile
CMD [ "/bin/bash" ]
# Leave these args here to better use the Docker build cache
ARG CONDA_VERSION=py38_4.9.2
ARG CONDA_MD5=122c8c9beb51e124ab32a0fa6426c656
RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-${CONDA_VERSION}-Linux-x86_64.sh -O miniconda.sh && \
echo "${CONDA_MD5} miniconda.sh" > miniconda.md5 && \
if ! md5sum --status -c miniconda.md5; then exit 1; fi && \
mkdir -p /opt && \
sh miniconda.sh -b -p /opt/conda && \
rm miniconda.sh miniconda.md5 && \
ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh && \
echo ". /opt/conda/etc/profile.d/conda.sh" >> ~/.bashrc && \
echo "conda activate base" >> ~/.bashrc && \
find /opt/conda/ -follow -type f -name '*.a' -delete && \
find /opt/conda/ -follow -type f -name '*.js.map' -delete && \
/opt/conda/bin/conda clean -afy
##############################################
#### End of continuumio/miniconda3:latest ####
##############################################
# Now we're ready to create our conda environment
COPY environment.yml /tmp/
RUN conda update -y -n base conda \
&& echo ' - pyvirtualdisplay' >> /tmp/environment.yml \
&& conda env create -f /tmp/environment.yml \
&& conda clean -y -t \
&& rm /tmp/environment.yml
ARG username
ARG userid
ARG home=/home/${username}
ARG workdir=${home}/handson-ml2
RUN adduser ${username} --uid ${userid} --gecos '' --disabled-password \
&& echo "${username} ALL=(root) NOPASSWD:ALL" > /etc/sudoers.d/${username} \
&& chmod 0440 /etc/sudoers.d/${username}
WORKDIR ${workdir}
RUN chown ${username}:${username} ${workdir}
USER ${username}
WORKDIR ${workdir}
# The config below enables diffing notebooks with nbdiff (and nbdiff support
# in git diff command) after connecting to the container by "make exec" (or
# "docker-compose exec handson-ml2 bash")
# You may also try running:
# nbdiff NOTEBOOK_NAME.ipynb
# to get nbdiff between checkpointed version and current version of the
# given notebook.
RUN git-nbdiffdriver config --enable --global
# INFO: Optionally uncomment any (one) of the following RUN commands below to ignore either
# metadata or details in nbdiff within git diff
#RUN git config --global diff.jupyternotebook.command 'git-nbdiffdriver diff --ignore-metadata'
RUN git config --global diff.jupyternotebook.command 'git-nbdiffdriver diff --ignore-details'
COPY docker/bashrc.bash /tmp/
RUN cat /tmp/bashrc.bash >> ${home}/.bashrc \
&& echo "export PATH=\"${workdir}/docker/bin:$PATH\"" >> ${home}/.bashrc \
&& sudo rm /tmp/bashrc.bash
# INFO: Uncomment lines below to enable automatic save of python-only and html-only
# exports alongside the notebook
#COPY docker/jupyter_notebook_config.py /tmp/
#RUN cat /tmp/jupyter_notebook_config.py >> ${home}/.jupyter/jupyter_notebook_config.py
#RUN sudo rm /tmp/jupyter_notebook_config.py
# INFO: Uncomment the RUN command below to disable git diff paging
#RUN git config --global core.pager ''
# INFO: Uncomment the RUN command below for easy and constant notebook URL (just localhost:8888)
# That will switch Jupyter to using empty password instead of a token.
# To avoid making a security hole you SHOULD in fact not only uncomment but
# regenerate the hash for your own non-empty password and replace the hash below.
# You can compute a password hash in any notebook, just run the code:
# from notebook.auth import passwd
# passwd()
# and take the hash from the output
#RUN mkdir -p ${home}/.jupyter && \
# echo 'c.NotebookApp.password = u"sha1:c6bbcba2d04b:f969e403db876dcfbe26f47affe41909bd53392e"' \
# >> ${home}/.jupyter/jupyter_notebook_config.py

View File

@ -71,3 +71,56 @@ You can see changes you made relative to the version in git using `git diff` whi
You may also try `nbd NOTEBOOK_NAME.ipynb` command (custom, see bashrc file) to compare one of your notebooks with its `checkpointed` version.<br/>
To be precise, the output will tell you *what modifications should be re-played on the **manually saved** version of the notebook (located in `.ipynb_checkpoints` subdirectory) to update it to the **current** i.e. **auto-saved** version (given as command's argument - located in working directory)*.
## GPU Support on Linux (experimental)
If you're using Linux, and you have a TensorFlow-compatible GPU card (NVidia card with Compute Capability ≥ 3.5) that you would like TensorFlow to use inside the docker container, then you should download and install the latest driver for your card from [nvidia.com](https://www.nvidia.com/Download/index.aspx?lang=en-us). You will also need to install [NVidia Docker support](https://github.com/NVIDIA/nvidia-docker): if you are using Docker 19.03 or above, you must install the `nvidia-container-toolkit` package, and for earlier versions, you must install `nvidia-docker2`.
To build the image, edit `docker-compose.yml`, replace the line `dockerfile: ./docker/Dockerfile` with `dockerfile: ./docker/Dockerfile.gpu`, and then run:
```bash
$ cd /path/to/project/handson-ml2/docker
$ docker-compose build
```
To run the image, it's depends. If you have `docker-compose` version 1.28 or above, that's great! You can simply uncomment the `deploy` section in `docker-compose.yml`, and then run:
```bash
$ cd /path/to/project/handson-ml2/docker
$ docker-compose up
[...]
or http://127.0.0.1:8888/?token=[...]
```
However, if you have an earlier version of `docker-compose`, it's simpler to use `docker run` directly. If you are using Docker 19.03 or above, you can run:
```bash
$ cd /path/to/project/handson-ml2
$ docker run --name handson-ml2 --gpus all -p 8888:8888 -p 6006:6006 --log-opt mode=non-blocking --log-opt max-buffer-size=50m -d -v `pwd`:/home/devel/handson-ml2 handson-ml2 /opt/conda/envs/tf2/bin/jupyter notebook --ip='0.0.0.0' --port=8888 --no-browser
```
If you are using an older version of Docker, then replace `--gpus all` with `--runtime=nvidia`.
Then, display the container's logs and point your browser to the URL printed on the screen:
```bash
$ docker logs handson-ml2
[I 09:07:10.805 NotebookApp] Writing notebook server cookie secret to /home/devel/.local/share/jupyter/runtime/notebook_cookie_secret
[...]
or http://127.0.0.1:8888/?token=[...]
```
If everything goes well, Jupyter should appear, and if you open a notebook and execute the following code, it should show a GPU device in the list:
```python
import tensorflow as tf
tf.config.list_physical_devices()
```
Lastly, to stop and destroy the container (but not the image), run:
```bash
$ docker stop handson-ml2
$ docker rm handson-ml2
```

View File

@ -3,7 +3,7 @@ services:
handson-ml2:
build:
context: ../
dockerfile: ./docker/Dockerfile
dockerfile: ./docker/Dockerfile #Dockerfile.gpu
args:
- username=devel
- userid=1000
@ -20,3 +20,8 @@ services:
volumes:
- ../:/home/devel/handson-ml2
command: /opt/conda/envs/tf2/bin/jupyter notebook --ip='0.0.0.0' --port=8888 --no-browser
#deploy:
# resources:
# reservations:
# devices:
# - capabilities: [gpu]