Add ColumnTransformer to future_encoders.py

main
Aurélien Geron 2018-07-31 20:09:12 +01:00
parent e2d450708a
commit de9f490bc3
1 changed files with 731 additions and 3 deletions

View File

@ -1,3 +1,17 @@
"""
This module merges two files from Scikit-Learn 0.20 to make a few encoders
available for users using an earlier version:
* sklearn/preprocessing/data.py (OneHotEncoder and CategoricalEncoder)
* sklearn/compose/_column_transformer.py (ColumnTransformer)
I just copy/pasted the contents, fixed the imports and __all__, and also
copied the definitions of three pipeline functions whose signature changes
in 0.20: _fit_one_transformer, _transform_one and _fit_transform_one.
The original authors are listed below.
----
The :mod:`sklearn.compose._column_transformer` module implements utilities
to work with heterogeneous data and to apply different transformers to
different columns.
"""
# Authors: Andreas Mueller <amueller@ais.uni-bonn.de> # Authors: Andreas Mueller <amueller@ais.uni-bonn.de>
# Joris Van den Bossche <jorisvandenbossche@gmail.com> # Joris Van den Bossche <jorisvandenbossche@gmail.com>
# License: BSD 3 clause # License: BSD 3 clause
@ -10,12 +24,44 @@ import warnings
import numpy as np import numpy as np
from scipy import sparse from scipy import sparse
from sklearn.base import BaseEstimator, TransformerMixin from sklearn.base import clone, BaseEstimator, TransformerMixin
from sklearn.externals import six from sklearn.externals import six
from sklearn.utils import check_array from sklearn.utils import Bunch, check_array
from sklearn.externals.joblib.parallel import delayed, Parallel
from sklearn.utils.metaestimators import _BaseComposition
from sklearn.utils.validation import check_is_fitted, FLOAT_DTYPES from sklearn.utils.validation import check_is_fitted, FLOAT_DTYPES
from sklearn.pipeline import _name_estimators
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing.label import LabelEncoder from sklearn.preprocessing.label import LabelEncoder
from itertools import chain
# weight and fit_params are not used but it allows _fit_one_transformer,
# _transform_one and _fit_transform_one to have the same signature to
# factorize the code in ColumnTransformer
def _fit_one_transformer(transformer, X, y, weight=None, **fit_params):
return transformer.fit(X, y)
def _transform_one(transformer, X, y, weight, **fit_params):
res = transformer.transform(X)
# if we have a weight for this transformer, multiply output
if weight is None:
return res
return res * weight
def _fit_transform_one(transformer, X, y, weight, **fit_params):
if hasattr(transformer, 'fit_transform'):
res = transformer.fit_transform(X, y, **fit_params)
else:
res = transformer.fit(X, y, **fit_params).transform(X)
# if we have a weight for this transformer, multiply output
if weight is None:
return res, transformer
return res * weight, transformer
BOUNDS_THRESHOLD = 1e-7 BOUNDS_THRESHOLD = 1e-7
@ -26,7 +72,9 @@ range = six.moves.range
__all__ = [ __all__ = [
'OneHotEncoder', 'OneHotEncoder',
'OrdinalEncoder' 'OrdinalEncoder',
'ColumnTransformer',
'make_column_transformer'
] ]
@ -880,3 +928,683 @@ class OrdinalEncoder(_BaseEncoder):
X_tr[:, i] = self.categories_[i][labels] X_tr[:, i] = self.categories_[i][labels]
return X_tr return X_tr
_ERR_MSG_1DCOLUMN = ("1D data passed to a transformer that expects 2D data. "
"Try to specify the column selection as a list of one "
"item instead of a scalar.")
class ColumnTransformer(_BaseComposition, TransformerMixin):
"""Applies transformers to columns of an array or pandas DataFrame.
EXPERIMENTAL: some behaviors may change between releases without
deprecation.
This estimator allows different columns or column subsets of the input
to be transformed separately and the results combined into a single
feature space.
This is useful for heterogeneous or columnar data, to combine several
feature extraction mechanisms or transformations into a single transformer.
Read more in the :ref:`User Guide <column_transformer>`.
.. versionadded:: 0.20
Parameters
----------
transformers : list of tuples
List of (name, transformer, column(s)) tuples specifying the
transformer objects to be applied to subsets of the data.
name : string
Like in Pipeline and FeatureUnion, this allows the transformer and
its parameters to be set using ``set_params`` and searched in grid
search.
transformer : estimator or {'passthrough', 'drop'}
Estimator must support `fit` and `transform`. Special-cased
strings 'drop' and 'passthrough' are accepted as well, to
indicate to drop the columns or to pass them through untransformed,
respectively.
column(s) : string or int, array-like of string or int, slice, \
boolean mask array or callable
Indexes the data on its second axis. Integers are interpreted as
positional columns, while strings can reference DataFrame columns
by name. A scalar string or int should be used where
``transformer`` expects X to be a 1d array-like (vector),
otherwise a 2d array will be passed to the transformer.
A callable is passed the input data `X` and can return any of the
above.
remainder : {'drop', 'passthrough'} or estimator, default 'drop'
By default, only the specified columns in `transformers` are
transformed and combined in the output, and the non-specified
columns are dropped. (default of ``'drop'``).
By specifying ``remainder='passthrough'``, all remaining columns that
were not specified in `transformers` will be automatically passed
through. This subset of columns is concatenated with the output of
the transformers.
By setting ``remainder`` to be an estimator, the remaining
non-specified columns will use the ``remainder`` estimator. The
estimator must support `fit` and `transform`.
sparse_threshold : float, default = 0.3
If the transformed output consists of a mix of sparse and dense data,
it will be stacked as a sparse matrix if the density is lower than this
value. Use ``sparse_threshold=0`` to always return dense.
When the transformed output consists of all sparse or all dense data,
the stacked result will be sparse or dense, respectively, and this
keyword will be ignored.
n_jobs : int, optional
Number of jobs to run in parallel (default 1).
transformer_weights : dict, optional
Multiplicative weights for features per transformer. The output of the
transformer is multiplied by these weights. Keys are transformer names,
values the weights.
Attributes
----------
transformers_ : list
The collection of fitted transformers as tuples of
(name, fitted_transformer, column). `fitted_transformer` can be an
estimator, 'drop', or 'passthrough'. If there are remaining columns,
the final element is a tuple of the form:
('remainder', transformer, remaining_columns) corresponding to the
``remainder`` parameter. If there are remaining columns, then
``len(transformers_)==len(transformers)+1``, otherwise
``len(transformers_)==len(transformers)``.
named_transformers_ : Bunch object, a dictionary with attribute access
Read-only attribute to access any transformer by given name.
Keys are transformer names and values are the fitted transformer
objects.
sparse_output_ : boolean
Boolean flag indicating wether the output of ``transform`` is a
sparse matrix or a dense numpy array, which depends on the output
of the individual transformers and the `sparse_threshold` keyword.
Notes
-----
The order of the columns in the transformed feature matrix follows the
order of how the columns are specified in the `transformers` list.
Columns of the original feature matrix that are not specified are
dropped from the resulting transformed feature matrix, unless specified
in the `passthrough` keyword. Those columns specified with `passthrough`
are added at the right to the output of the transformers.
See also
--------
sklearn.compose.make_column_transformer : convenience function for
combining the outputs of multiple transformer objects applied to
column subsets of the original feature space.
Examples
--------
>>> from sklearn.compose import ColumnTransformer
>>> from sklearn.preprocessing import Normalizer
>>> ct = ColumnTransformer(
... [("norm1", Normalizer(norm='l1'), [0, 1]),
... ("norm2", Normalizer(norm='l1'), slice(2, 4))])
>>> X = np.array([[0., 1., 2., 2.],
... [1., 1., 0., 1.]])
>>> # Normalizer scales each row of X to unit norm. A separate scaling
>>> # is applied for the two first and two last elements of each
>>> # row independently.
>>> ct.fit_transform(X) # doctest: +NORMALIZE_WHITESPACE
array([[0. , 1. , 0.5, 0.5],
[0.5, 0.5, 0. , 1. ]])
"""
def __init__(self, transformers, remainder='drop', sparse_threshold=0.3,
n_jobs=1, transformer_weights=None):
self.transformers = transformers
self.remainder = remainder
self.sparse_threshold = sparse_threshold
self.n_jobs = n_jobs
self.transformer_weights = transformer_weights
@property
def _transformers(self):
"""
Internal list of transformer only containing the name and
transformers, dropping the columns. This is for the implementation
of get_params via BaseComposition._get_params which expects lists
of tuples of len 2.
"""
return [(name, trans) for name, trans, _ in self.transformers]
@_transformers.setter
def _transformers(self, value):
self.transformers = [
(name, trans, col) for ((name, trans), (_, _, col))
in zip(value, self.transformers)]
def get_params(self, deep=True):
"""Get parameters for this estimator.
Parameters
----------
deep : boolean, optional
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
Returns
-------
params : mapping of string to any
Parameter names mapped to their values.
"""
return self._get_params('_transformers', deep=deep)
def set_params(self, **kwargs):
"""Set the parameters of this estimator.
Valid parameter keys can be listed with ``get_params()``.
Returns
-------
self
"""
self._set_params('_transformers', **kwargs)
return self
def _iter(self, X=None, fitted=False, replace_strings=False):
"""Generate (name, trans, column, weight) tuples
"""
if fitted:
transformers = self.transformers_
else:
transformers = self.transformers
if self._remainder[2] is not None:
transformers = chain(transformers, [self._remainder])
get_weight = (self.transformer_weights or {}).get
for name, trans, column in transformers:
sub = None if X is None else _get_column(X, column)
if replace_strings:
# replace 'passthrough' with identity transformer and
# skip in case of 'drop'
if trans == 'passthrough':
trans = FunctionTransformer(
validate=False, accept_sparse=True,
check_inverse=False)
elif trans == 'drop':
continue
yield (name, trans, sub, get_weight(name))
def _validate_transformers(self):
if not self.transformers:
return
names, transformers, _ = zip(*self.transformers)
# validate names
self._validate_names(names)
# validate estimators
for t in transformers:
if t in ('drop', 'passthrough'):
continue
if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not
hasattr(t, "transform")):
raise TypeError("All estimators should implement fit and "
"transform, or can be 'drop' or 'passthrough' "
"specifiers. '%s' (type %s) doesn't." %
(t, type(t)))
def _validate_remainder(self, X):
"""
Validates ``remainder`` and defines ``_remainder`` targeting
the remaining columns.
"""
is_transformer = ((hasattr(self.remainder, "fit")
or hasattr(self.remainder, "fit_transform"))
and hasattr(self.remainder, "transform"))
if (self.remainder not in ('drop', 'passthrough')
and not is_transformer):
raise ValueError(
"The remainder keyword needs to be one of 'drop', "
"'passthrough', or estimator. '%s' was passed instead" %
self.remainder)
n_columns = X.shape[1]
cols = []
for _, _, columns in self.transformers:
cols.extend(_get_column_indices(X, columns))
remaining_idx = sorted(list(set(range(n_columns)) - set(cols))) or None
self._remainder = ('remainder', self.remainder, remaining_idx)
@property
def named_transformers_(self):
"""Access the fitted transformer by name.
Read-only attribute to access any transformer by given name.
Keys are transformer names and values are the fitted transformer
objects.
"""
# Use Bunch object to improve autocomplete
return Bunch(**dict([(name, trans) for name, trans, _
in self.transformers_]))
def get_feature_names(self):
"""Get feature names from all transformers.
Returns
-------
feature_names : list of strings
Names of the features produced by transform.
"""
check_is_fitted(self, 'transformers_')
feature_names = []
for name, trans, _, _ in self._iter(fitted=True):
if trans == 'drop':
continue
elif trans == 'passthrough':
raise NotImplementedError(
"get_feature_names is not yet supported when using "
"a 'passthrough' transformer.")
elif not hasattr(trans, 'get_feature_names'):
raise AttributeError("Transformer %s (type %s) does not "
"provide get_feature_names."
% (str(name), type(trans).__name__))
feature_names.extend([name + "__" + f for f in
trans.get_feature_names()])
return feature_names
def _update_fitted_transformers(self, transformers):
# transformers are fitted; excludes 'drop' cases
transformers = iter(transformers)
transformers_ = []
transformer_iter = self.transformers
if self._remainder[2] is not None:
transformer_iter = chain(transformer_iter, [self._remainder])
for name, old, column in transformer_iter:
if old == 'drop':
trans = 'drop'
elif old == 'passthrough':
# FunctionTransformer is present in list of transformers,
# so get next transformer, but save original string
next(transformers)
trans = 'passthrough'
else:
trans = next(transformers)
transformers_.append((name, trans, column))
# sanity check that transformers is exhausted
assert not list(transformers)
self.transformers_ = transformers_
def _validate_output(self, result):
"""
Ensure that the output of each transformer is 2D. Otherwise
hstack can raise an error or produce incorrect results.
"""
names = [name for name, _, _, _ in self._iter(replace_strings=True)]
for Xs, name in zip(result, names):
if not getattr(Xs, 'ndim', 0) == 2:
raise ValueError(
"The output of the '{0}' transformer should be 2D (scipy "
"matrix, array, or pandas DataFrame).".format(name))
def _fit_transform(self, X, y, func, fitted=False):
"""
Private function to fit and/or transform on demand.
Return value (transformers and/or transformed X data) depends
on the passed function.
``fitted=True`` ensures the fitted transformers are used.
"""
try:
return Parallel(n_jobs=self.n_jobs)(
delayed(func)(clone(trans) if not fitted else trans,
X_sel, y, weight)
for _, trans, X_sel, weight in self._iter(
X=X, fitted=fitted, replace_strings=True))
except ValueError as e:
if "Expected 2D array, got 1D array instead" in str(e):
raise ValueError(_ERR_MSG_1DCOLUMN)
else:
raise
def fit(self, X, y=None):
"""Fit all transformers using X.
Parameters
----------
X : array-like or DataFrame of shape [n_samples, n_features]
Input data, of which specified subsets are used to fit the
transformers.
y : array-like, shape (n_samples, ...), optional
Targets for supervised learning.
Returns
-------
self : ColumnTransformer
This estimator
"""
# we use fit_transform to make sure to set sparse_output_ (for which we
# need the transformed data) to have consistent output type in predict
self.fit_transform(X, y=y)
return self
def fit_transform(self, X, y=None):
"""Fit all transformers, transform the data and concatenate results.
Parameters
----------
X : array-like or DataFrame of shape [n_samples, n_features]
Input data, of which specified subsets are used to fit the
transformers.
y : array-like, shape (n_samples, ...), optional
Targets for supervised learning.
Returns
-------
X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)
hstack of results of transformers. sum_n_components is the
sum of n_components (output dimension) over transformers. If
any result is a sparse matrix, everything will be converted to
sparse matrices.
"""
self._validate_remainder(X)
self._validate_transformers()
result = self._fit_transform(X, y, _fit_transform_one)
if not result:
self._update_fitted_transformers([])
# All transformers are None
return np.zeros((X.shape[0], 0))
Xs, transformers = zip(*result)
# determine if concatenated output will be sparse or not
if all(sparse.issparse(X) for X in Xs):
self.sparse_output_ = True
elif any(sparse.issparse(X) for X in Xs):
nnz = sum(X.nnz if sparse.issparse(X) else X.size for X in Xs)
total = sum(X.shape[0] * X.shape[1] if sparse.issparse(X)
else X.size for X in Xs)
density = nnz / total
self.sparse_output_ = density < self.sparse_threshold
else:
self.sparse_output_ = False
self._update_fitted_transformers(transformers)
self._validate_output(Xs)
return self._hstack(list(Xs))
def transform(self, X):
"""Transform X separately by each transformer, concatenate results.
Parameters
----------
X : array-like or DataFrame of shape [n_samples, n_features]
The data to be transformed by subset.
Returns
-------
X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)
hstack of results of transformers. sum_n_components is the
sum of n_components (output dimension) over transformers. If
any result is a sparse matrix, everything will be converted to
sparse matrices.
"""
check_is_fitted(self, 'transformers_')
Xs = self._fit_transform(X, None, _transform_one, fitted=True)
self._validate_output(Xs)
if not Xs:
# All transformers are None
return np.zeros((X.shape[0], 0))
return self._hstack(list(Xs))
def _hstack(self, Xs):
"""Stacks Xs horizontally.
This allows subclasses to control the stacking behavior, while reusing
everything else from ColumnTransformer.
Parameters
----------
Xs : List of numpy arrays, sparse arrays, or DataFrames
"""
if self.sparse_output_:
return sparse.hstack(Xs).tocsr()
else:
Xs = [f.toarray() if sparse.issparse(f) else f for f in Xs]
return np.hstack(Xs)
def _check_key_type(key, superclass):
"""
Check that scalar, list or slice is of a certain type.
This is only used in _get_column and _get_column_indices to check
if the `key` (column specification) is fully integer or fully string-like.
Parameters
----------
key : scalar, list, slice, array-like
The column specification to check
superclass : int or six.string_types
The type for which to check the `key`
"""
if isinstance(key, superclass):
return True
if isinstance(key, slice):
return (isinstance(key.start, (superclass, type(None))) and
isinstance(key.stop, (superclass, type(None))))
if isinstance(key, list):
return all(isinstance(x, superclass) for x in key)
if hasattr(key, 'dtype'):
if superclass is int:
return key.dtype.kind == 'i'
else:
# superclass = six.string_types
return key.dtype.kind in ('O', 'U', 'S')
return False
def _get_column(X, key):
"""
Get feature column(s) from input data X.
Supported input types (X): numpy arrays, sparse arrays and DataFrames
Supported key types (key):
- scalar: output is 1D
- lists, slices, boolean masks: output is 2D
- callable that returns any of the above
Supported key data types:
- integer or boolean mask (positional):
- supported for arrays, sparse matrices and dataframes
- string (key-based):
- only supported for dataframes
- So no keys other than strings are allowed (while in principle you
can use any hashable object as key).
"""
if callable(key):
key = key(X)
# check whether we have string column names or integers
if _check_key_type(key, int):
column_names = False
elif _check_key_type(key, six.string_types):
column_names = True
elif hasattr(key, 'dtype') and np.issubdtype(key.dtype, np.bool_):
# boolean mask
column_names = False
if hasattr(X, 'loc'):
# pandas boolean masks don't work with iloc, so take loc path
column_names = True
else:
raise ValueError("No valid specification of the columns. Only a "
"scalar, list or slice of all integers or all "
"strings, or boolean mask is allowed")
if column_names:
if hasattr(X, 'loc'):
# pandas dataframes
return X.loc[:, key]
else:
raise ValueError("Specifying the columns using strings is only "
"supported for pandas DataFrames")
else:
if hasattr(X, 'iloc'):
# pandas dataframes
return X.iloc[:, key]
else:
# numpy arrays, sparse arrays
return X[:, key]
def _get_column_indices(X, key):
"""
Get feature column indices for input data X and key.
For accepted values of `key`, see the docstring of _get_column
"""
n_columns = X.shape[1]
if callable(key):
key = key(X)
if _check_key_type(key, int):
if isinstance(key, int):
return [key]
elif isinstance(key, slice):
return list(range(n_columns)[key])
else:
return list(key)
elif _check_key_type(key, six.string_types):
try:
all_columns = list(X.columns)
except AttributeError:
raise ValueError("Specifying the columns using strings is only "
"supported for pandas DataFrames")
if isinstance(key, six.string_types):
columns = [key]
elif isinstance(key, slice):
start, stop = key.start, key.stop
if start is not None:
start = all_columns.index(start)
if stop is not None:
# pandas indexing with strings is endpoint included
stop = all_columns.index(stop) + 1
else:
stop = n_columns + 1
return list(range(n_columns)[slice(start, stop)])
else:
columns = list(key)
return [all_columns.index(col) for col in columns]
elif hasattr(key, 'dtype') and np.issubdtype(key.dtype, np.bool_):
# boolean mask
return list(np.arange(n_columns)[key])
else:
raise ValueError("No valid specification of the columns. Only a "
"scalar, list or slice of all integers or all "
"strings, or boolean mask is allowed")
def _get_transformer_list(estimators):
"""
Construct (name, trans, column) tuples from list
"""
transformers = [trans[1] for trans in estimators]
columns = [trans[0] for trans in estimators]
names = [trans[0] for trans in _name_estimators(transformers)]
transformer_list = list(zip(names, transformers, columns))
return transformer_list
def make_column_transformer(*transformers, **kwargs):
"""Construct a ColumnTransformer from the given transformers.
This is a shorthand for the ColumnTransformer constructor; it does not
require, and does not permit, naming the transformers. Instead, they will
be given names automatically based on their types. It also does not allow
weighting.
Parameters
----------
*transformers : tuples of column selections and transformers
remainder : {'drop', 'passthrough'} or estimator, default 'drop'
By default, only the specified columns in `transformers` are
transformed and combined in the output, and the non-specified
columns are dropped. (default of ``'drop'``).
By specifying ``remainder='passthrough'``, all remaining columns that
were not specified in `transformers` will be automatically passed
through. This subset of columns is concatenated with the output of
the transformers.
By setting ``remainder`` to be an estimator, the remaining
non-specified columns will use the ``remainder`` estimator. The
estimator must support `fit` and `transform`.
n_jobs : int, optional
Number of jobs to run in parallel (default 1).
Returns
-------
ct : ColumnTransformer
See also
--------
sklearn.compose.ColumnTransformer : Class that allows combining the
outputs of multiple transformer objects used on column subsets
of the data into a single feature space.
Examples
--------
>>> from sklearn.preprocessing import StandardScaler, OneHotEncoder
>>> from sklearn.compose import make_column_transformer
>>> make_column_transformer(
... (['numerical_column'], StandardScaler()),
... (['categorical_column'], OneHotEncoder()))
... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
ColumnTransformer(n_jobs=1, remainder='drop', sparse_threshold=0.3,
transformer_weights=None,
transformers=[('standardscaler',
StandardScaler(...),
['numerical_column']),
('onehotencoder',
OneHotEncoder(...),
['categorical_column'])])
"""
n_jobs = kwargs.pop('n_jobs', 1)
remainder = kwargs.pop('remainder', 'drop')
if kwargs:
raise TypeError('Unknown keyword arguments: "{}"'
.format(list(kwargs.keys())[0]))
transformer_list = _get_transformer_list(transformers)
return ColumnTransformer(transformer_list, n_jobs=n_jobs,
remainder=remainder)