Fix people_per_house feature name, and fix solution to last exercise
parent
c658c2b07c
commit
ef27260251
|
@ -1803,7 +1803,7 @@
|
||||||
" [\"total_bedrooms\", \"total_rooms\"]),\n",
|
" [\"total_bedrooms\", \"total_rooms\"]),\n",
|
||||||
" (\"rooms_per_house\", ratio_pipeline(\"rooms_per_house\"),\n",
|
" (\"rooms_per_house\", ratio_pipeline(\"rooms_per_house\"),\n",
|
||||||
" [\"total_rooms\", \"households\"]),\n",
|
" [\"total_rooms\", \"households\"]),\n",
|
||||||
" (\"people_per_house\", ratio_pipeline(\"bedrooms_ratio\"),\n",
|
" (\"people_per_house\", ratio_pipeline(\"people_per_house\"),\n",
|
||||||
" [\"population\", \"households\"]),\n",
|
" [\"population\", \"households\"]),\n",
|
||||||
" (\"log\", log_pipeline, [\"total_bedrooms\", \"total_rooms\",\n",
|
" (\"log\", log_pipeline, [\"total_bedrooms\", \"total_rooms\",\n",
|
||||||
" \"population\", \"households\", \"median_income\"]),\n",
|
" \"population\", \"households\", \"median_income\"]),\n",
|
||||||
|
@ -2869,6 +2869,8 @@
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
"from sklearn.utils.estimator_checks import check_estimator\n",
|
||||||
|
"\n",
|
||||||
"check_estimator(FeatureFromRegressor(KNeighborsRegressor()))"
|
"check_estimator(FeatureFromRegressor(KNeighborsRegressor()))"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
@ -3046,12 +3048,13 @@
|
||||||
" self.with_mean = with_mean\n",
|
" self.with_mean = with_mean\n",
|
||||||
"\n",
|
"\n",
|
||||||
" def fit(self, X, y=None): # y is required even though we don't use it\n",
|
" def fit(self, X, y=None): # y is required even though we don't use it\n",
|
||||||
|
" X_orig = X\n",
|
||||||
" X = check_array(X) # checks that X is an array with finite float values\n",
|
" X = check_array(X) # checks that X is an array with finite float values\n",
|
||||||
" self.mean_ = X.mean(axis=0)\n",
|
" self.mean_ = X.mean(axis=0)\n",
|
||||||
" self.scale_ = X.std(axis=0)\n",
|
" self.scale_ = X.std(axis=0)\n",
|
||||||
" self.n_features_in_ = X.shape[1] # every estimator stores this in fit()\n",
|
" self.n_features_in_ = X.shape[1] # every estimator stores this in fit()\n",
|
||||||
" if hasattr(X, \"columns\"):\n",
|
" if hasattr(X_orig, \"columns\"):\n",
|
||||||
" self.feature_names_in_ = np.array(X.columns, np.object)\n",
|
" self.feature_names_in_ = np.array(X_orig.columns, dtype=np.object)\n",
|
||||||
" return self # always return self!\n",
|
" return self # always return self!\n",
|
||||||
"\n",
|
"\n",
|
||||||
" def transform(self, X):\n",
|
" def transform(self, X):\n",
|
||||||
|
@ -3203,8 +3206,8 @@
|
||||||
"scaler = StandardScalerClone()\n",
|
"scaler = StandardScalerClone()\n",
|
||||||
"X_scaled = scaler.fit_transform(df)\n",
|
"X_scaled = scaler.fit_transform(df)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"assert np.all(ss.feature_names_in_ == [\"a\", \"b\"])\n",
|
"assert np.all(scaler.feature_names_in_ == [\"a\", \"b\"])\n",
|
||||||
"assert np.all(ss.get_feature_names_out() == [\"a\", \"b\"])"
|
"assert np.all(scaler.get_feature_names_out() == [\"a\", \"b\"])"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|
Loading…
Reference in New Issue