diff --git a/05_support_vector_machines.ipynb b/05_support_vector_machines.ipynb index abbc1c1..ef7c39f 100644 --- a/05_support_vector_machines.ipynb +++ b/05_support_vector_machines.ipynb @@ -869,7 +869,7 @@ " ax.text(4.5, 2.5, 3.8, \"Decision function $h$\", fontsize=15)\n", " ax.set_xlabel(r\"Petal length\", fontsize=15)\n", " ax.set_ylabel(r\"Petal width\", fontsize=15)\n", - " ax.set_zlabel(r\"$h = \\mathbf{w}^t \\cdot \\mathbf{x} + b$\", fontsize=18)\n", + " ax.set_zlabel(r\"$h = \\mathbf{w}^T \\mathbf{x} + b$\", fontsize=18)\n", " ax.legend(loc=\"upper left\", fontsize=16)\n", "\n", "fig = plt.figure(figsize=(11, 6))\n", @@ -1165,7 +1165,7 @@ "source": [ "from sklearn.linear_model import SGDClassifier\n", "\n", - "sgd_clf = SGDClassifier(loss=\"hinge\", alpha = 0.017, n_iter = 50, random_state=42)\n", + "sgd_clf = SGDClassifier(loss=\"hinge\", alpha = 0.017, max_iter = 50, random_state=42)\n", "sgd_clf.fit(X, y.ravel())\n", "\n", "m = len(X)\n", @@ -1235,9 +1235,7 @@ { "cell_type": "code", "execution_count": 44, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from sklearn import datasets\n", @@ -1267,7 +1265,7 @@ "lin_clf = LinearSVC(loss=\"hinge\", C=C, random_state=42)\n", "svm_clf = SVC(kernel=\"linear\", C=C)\n", "sgd_clf = SGDClassifier(loss=\"hinge\", learning_rate=\"constant\", eta0=0.001, alpha=alpha,\n", - " n_iter=100000, random_state=42)\n", + " max_iter=100000, random_state=42)\n", "\n", "scaler = StandardScaler()\n", "X_scaled = scaler.fit_transform(X)\n", @@ -1378,9 +1376,7 @@ { "cell_type": "code", "execution_count": 48, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "np.random.seed(42)\n", @@ -1605,9 +1601,7 @@ { "cell_type": "code", "execution_count": 62, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from sklearn.datasets import fetch_california_housing\n", @@ -1627,9 +1621,7 @@ { "cell_type": "code", "execution_count": 63, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", @@ -1647,9 +1639,7 @@ { "cell_type": "code", "execution_count": 64, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from sklearn.preprocessing import StandardScaler\n", @@ -1784,9 +1774,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] } @@ -1807,7 +1795,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.5.2" }, "nav_menu": {}, "toc": {