name: homl3 channels: - conda-forge - defaults dependencies: - atari_py==0.2.6 # used only in chapter 17 - box2d-py=2.3 # used only in chapter 17 - ftfy=6.0 # used only in chapter 15 by the transformers library - graphviz # used only in chapter 5 for dot files - gym=0.19 # used only in chapter 17 - ipython=7.28 # a powerful Python shell - ipywidgets=7.6 # optionally used only in chapter 11 for tqdm in Jupyter - joblib=0.14 # used only in chapter 2 to save/load Scikit-Learn models - jupyter=1.0 # to edit and run Jupyter notebooks - matplotlib=3.4 # beautiful plots. See tutorial tools_matplotlib.ipynb - nbdime=3.1 # optional tool to diff Jupyter notebooks - nltk=3.6 # optionally used in chapter 3, exercise 4 - numexpr=2.7 # used only in the Pandas tutorial for numerical expressions - numpy=1.19 # Powerful n-dimensional arrays and numerical computing tools - opencv=4.5 # used only in chapter 17 by TF Agents for image preprocessing - pandas=1.3 # data analysis and manipulation tool - pillow=8.3 # image manipulation library, (used by matplotlib.image.imread) - pip # Python's package-management system - py-xgboost=1.4 # used only in chapter 6 for optimized Gradient Boosting - pyglet=1.5 # used only in chapter 17 to render environments - pyopengl=3.1 # used only in chapter 17 to render environments - python=3.7 # Python! Not using latest version as some libs lack support - python-graphviz # used only in chapter 5 for dot files - pyvirtualdisplay=2.2 # used only in chapter 17 if on headless server - requests=2.26 # used only in chapter 18 for REST API queries - scikit-learn=1.0 # machine learning library - scipy=1.7 # scientific/technical computing library - tqdm=4.62 # a progress bar library - wheel # built-package format for pip - widgetsnbextension=3.5 # interactive HTML widgets for Jupyter notebooks - pip: - tensorboard-plugin-profile==2.5.0 # profiling plugin for TensorBoard - tensorboard==2.6.0 # TensorFlow's visualization toolkit - tensorflow-addons==0.14.0 # used only in chapter 15 for a seq2seq impl. - tensorflow-datasets==4.4.0 # datasets repository, ready to use - tensorflow-hub==0.12.0 # trained ML models repository, ready to use - tensorflow-probability==0.14.1 # Optional. Probability/Stats lib. - tensorflow-serving-api==2.6.0 # or tensorflow-serving-api-gpu if gpu - tensorflow==2.6.0 # Deep Learning library - tf-agents==0.10.0 # Reinforcement Learning lib based on TensorFlow - tfx==1.3.0 # platform to deploy production ML pipelines - transformers==4.11.3 # Natural Language Processing lib for TF or PyTorch - urlextract==1.4.0 # optionally used in chapter 3, exercise 4 - attrs=20.3 - click=7.1 - packaging=20.9 - six=1.15 - typing-extensions=3.7