{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "**Chapter 7 – Ensemble Learning and Random Forests**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "_This notebook contains all the sample code and solutions to the exercises in chapter 7._" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Setup" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead)." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Python ≥3.5 is required\n", "import sys\n", "assert sys.version_info >= (3, 5)\n", "\n", "# Common imports\n", "import numpy as np\n", "import os\n", "\n", "# to make this notebook's output stable across runs\n", "np.random.seed(42)\n", "\n", "# To plot pretty figures\n", "%matplotlib inline\n", "import matplotlib as mpl\n", "import matplotlib.pyplot as plt\n", "mpl.rc('axes', labelsize=14)\n", "mpl.rc('xtick', labelsize=12)\n", "mpl.rc('ytick', labelsize=12)\n", "\n", "# Where to save the figures\n", "PROJECT_ROOT_DIR = \".\"\n", "CHAPTER_ID = \"ensembles\"\n", "\n", "def image_path(fig_id):\n", " return os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id)\n", "\n", "def save_fig(fig_id, tight_layout=True):\n", " print(\"Saving figure\", fig_id)\n", " if tight_layout:\n", " plt.tight_layout()\n", " plt.savefig(image_path(fig_id) + \".png\", format='png', dpi=300)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Voting classifiers" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "heads_proba = 0.51\n", "coin_tosses = (np.random.rand(10000, 10) < heads_proba).astype(np.int32)\n", "cumulative_heads_ratio = np.cumsum(coin_tosses, axis=0) / np.arange(1, 10001).reshape(-1, 1)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "plt.figure(figsize=(8,3.5))\n", "plt.plot(cumulative_heads_ratio)\n", "plt.plot([0, 10000], [0.51, 0.51], \"k--\", linewidth=2, label=\"51%\")\n", "plt.plot([0, 10000], [0.5, 0.5], \"k-\", label=\"50%\")\n", "plt.xlabel(\"Number of coin tosses\")\n", "plt.ylabel(\"Heads ratio\")\n", "plt.legend(loc=\"lower right\")\n", "plt.axis([0, 10000, 0.42, 0.58])\n", "save_fig(\"law_of_large_numbers_plot\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "from sklearn.datasets import make_moons\n", "\n", "X, y = make_moons(n_samples=500, noise=0.30, random_state=42)\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Warning**: In Scikit-Learn 0.20, some hyperparameters (`solver`, `n_estimators`, `gamma`, etc.) start issuing warnings about the fact that their default value will change in Scikit-Learn 0.22. To avoid these warnings and ensure that this notebooks keeps producing the same outputs as in the book, I set the hyperparameters to their old default value. In your own code, you can simply rely on the latest default values instead." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.ensemble import VotingClassifier\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.svm import SVC\n", "\n", "log_clf = LogisticRegression(solver=\"liblinear\", random_state=42)\n", "rnd_clf = RandomForestClassifier(n_estimators=10, random_state=42)\n", "svm_clf = SVC(gamma=\"auto\", random_state=42)\n", "\n", "voting_clf = VotingClassifier(\n", " estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)],\n", " voting='hard')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "voting_clf.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import accuracy_score\n", "\n", "for clf in (log_clf, rnd_clf, svm_clf, voting_clf):\n", " clf.fit(X_train, y_train)\n", " y_pred = clf.predict(X_test)\n", " print(clf.__class__.__name__, accuracy_score(y_test, y_pred))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "log_clf = LogisticRegression(solver=\"liblinear\", random_state=42)\n", "rnd_clf = RandomForestClassifier(n_estimators=10, random_state=42)\n", "svm_clf = SVC(gamma=\"auto\", probability=True, random_state=42)\n", "\n", "voting_clf = VotingClassifier(\n", " estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)],\n", " voting='soft')\n", "voting_clf.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import accuracy_score\n", "\n", "for clf in (log_clf, rnd_clf, svm_clf, voting_clf):\n", " clf.fit(X_train, y_train)\n", " y_pred = clf.predict(X_test)\n", " print(clf.__class__.__name__, accuracy_score(y_test, y_pred))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Bagging ensembles" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import BaggingClassifier\n", "from sklearn.tree import DecisionTreeClassifier\n", "\n", "bag_clf = BaggingClassifier(\n", " DecisionTreeClassifier(random_state=42), n_estimators=500,\n", " max_samples=100, bootstrap=True, n_jobs=-1, random_state=42)\n", "bag_clf.fit(X_train, y_train)\n", "y_pred = bag_clf.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import accuracy_score\n", "print(accuracy_score(y_test, y_pred))" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "tree_clf = DecisionTreeClassifier(random_state=42)\n", "tree_clf.fit(X_train, y_train)\n", "y_pred_tree = tree_clf.predict(X_test)\n", "print(accuracy_score(y_test, y_pred_tree))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "from matplotlib.colors import ListedColormap\n", "\n", "def plot_decision_boundary(clf, X, y, axes=[-1.5, 2.5, -1, 1.5], alpha=0.5, contour=True):\n", " x1s = np.linspace(axes[0], axes[1], 100)\n", " x2s = np.linspace(axes[2], axes[3], 100)\n", " x1, x2 = np.meshgrid(x1s, x2s)\n", " X_new = np.c_[x1.ravel(), x2.ravel()]\n", " y_pred = clf.predict(X_new).reshape(x1.shape)\n", " custom_cmap = ListedColormap(['#fafab0','#9898ff','#a0faa0'])\n", " plt.contourf(x1, x2, y_pred, alpha=0.3, cmap=custom_cmap)\n", " if contour:\n", " custom_cmap2 = ListedColormap(['#7d7d58','#4c4c7f','#507d50'])\n", " plt.contour(x1, x2, y_pred, cmap=custom_cmap2, alpha=0.8)\n", " plt.plot(X[:, 0][y==0], X[:, 1][y==0], \"yo\", alpha=alpha)\n", " plt.plot(X[:, 0][y==1], X[:, 1][y==1], \"bs\", alpha=alpha)\n", " plt.axis(axes)\n", " plt.xlabel(r\"$x_1$\", fontsize=18)\n", " plt.ylabel(r\"$x_2$\", fontsize=18, rotation=0)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "plt.figure(figsize=(11,4))\n", "plt.subplot(121)\n", "plot_decision_boundary(tree_clf, X, y)\n", "plt.title(\"Decision Tree\", fontsize=14)\n", "plt.subplot(122)\n", "plot_decision_boundary(bag_clf, X, y)\n", "plt.title(\"Decision Trees with Bagging\", fontsize=14)\n", "save_fig(\"decision_tree_without_and_with_bagging_plot\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Random Forests" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "bag_clf = BaggingClassifier(\n", " DecisionTreeClassifier(splitter=\"random\", max_leaf_nodes=16, random_state=42),\n", " n_estimators=500, max_samples=1.0, bootstrap=True, n_jobs=-1, random_state=42)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "bag_clf.fit(X_train, y_train)\n", "y_pred = bag_clf.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "\n", "rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16, n_jobs=-1, random_state=42)\n", "rnd_clf.fit(X_train, y_train)\n", "\n", "y_pred_rf = rnd_clf.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "np.sum(y_pred == y_pred_rf) / len(y_pred) # almost identical predictions" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "from sklearn.datasets import load_iris\n", "iris = load_iris()\n", "rnd_clf = RandomForestClassifier(n_estimators=500, n_jobs=-1, random_state=42)\n", "rnd_clf.fit(iris[\"data\"], iris[\"target\"])\n", "for name, score in zip(iris[\"feature_names\"], rnd_clf.feature_importances_):\n", " print(name, score)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "rnd_clf.feature_importances_" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "plt.figure(figsize=(6, 4))\n", "\n", "for i in range(15):\n", " tree_clf = DecisionTreeClassifier(max_leaf_nodes=16, random_state=42 + i)\n", " indices_with_replacement = np.random.randint(0, len(X_train), len(X_train))\n", " tree_clf.fit(X[indices_with_replacement], y[indices_with_replacement])\n", " plot_decision_boundary(tree_clf, X, y, axes=[-1.5, 2.5, -1, 1.5], alpha=0.02, contour=False)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Out-of-Bag evaluation" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "bag_clf = BaggingClassifier(\n", " DecisionTreeClassifier(random_state=42), n_estimators=500,\n", " bootstrap=True, n_jobs=-1, oob_score=True, random_state=40)\n", "bag_clf.fit(X_train, y_train)\n", "bag_clf.oob_score_" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "bag_clf.oob_decision_function_" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import accuracy_score\n", "y_pred = bag_clf.predict(X_test)\n", "accuracy_score(y_test, y_pred)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Feature importance" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "try:\n", " from sklearn.datasets import fetch_openml\n", " mnist = fetch_openml('mnist_784', version=1)\n", " mnist.target = mnist.target.astype(np.int64)\n", "except ImportError:\n", " from sklearn.datasets import fetch_mldata\n", " mnist = fetch_mldata('MNIST original')" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "rnd_clf = RandomForestClassifier(n_estimators=10, random_state=42)\n", "rnd_clf.fit(mnist[\"data\"], mnist[\"target\"])" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "def plot_digit(data):\n", " image = data.reshape(28, 28)\n", " plt.imshow(image, cmap = mpl.cm.hot,\n", " interpolation=\"nearest\")\n", " plt.axis(\"off\")" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "plot_digit(rnd_clf.feature_importances_)\n", "\n", "cbar = plt.colorbar(ticks=[rnd_clf.feature_importances_.min(), rnd_clf.feature_importances_.max()])\n", "cbar.ax.set_yticklabels(['Not important', 'Very important'])\n", "\n", "save_fig(\"mnist_feature_importance_plot\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# AdaBoost" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import AdaBoostClassifier\n", "\n", "ada_clf = AdaBoostClassifier(\n", " DecisionTreeClassifier(max_depth=1), n_estimators=200,\n", " algorithm=\"SAMME.R\", learning_rate=0.5, random_state=42)\n", "ada_clf.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "plot_decision_boundary(ada_clf, X, y)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "m = len(X_train)\n", "\n", "plt.figure(figsize=(11, 4))\n", "for subplot, learning_rate in ((121, 1), (122, 0.5)):\n", " sample_weights = np.ones(m)\n", " plt.subplot(subplot)\n", " for i in range(5):\n", " svm_clf = SVC(kernel=\"rbf\", C=0.05, gamma=\"auto\", random_state=42)\n", " svm_clf.fit(X_train, y_train, sample_weight=sample_weights)\n", " y_pred = svm_clf.predict(X_train)\n", " sample_weights[y_pred != y_train] *= (1 + learning_rate)\n", " plot_decision_boundary(svm_clf, X, y, alpha=0.2)\n", " plt.title(\"learning_rate = {}\".format(learning_rate), fontsize=16)\n", " if subplot == 121:\n", " plt.text(-0.7, -0.65, \"1\", fontsize=14)\n", " plt.text(-0.6, -0.10, \"2\", fontsize=14)\n", " plt.text(-0.5, 0.10, \"3\", fontsize=14)\n", " plt.text(-0.4, 0.55, \"4\", fontsize=14)\n", " plt.text(-0.3, 0.90, \"5\", fontsize=14)\n", "\n", "save_fig(\"boosting_plot\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "list(m for m in dir(ada_clf) if not m.startswith(\"_\") and m.endswith(\"_\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Gradient Boosting" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "np.random.seed(42)\n", "X = np.random.rand(100, 1) - 0.5\n", "y = 3*X[:, 0]**2 + 0.05 * np.random.randn(100)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "from sklearn.tree import DecisionTreeRegressor\n", "\n", "tree_reg1 = DecisionTreeRegressor(max_depth=2, random_state=42)\n", "tree_reg1.fit(X, y)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "y2 = y - tree_reg1.predict(X)\n", "tree_reg2 = DecisionTreeRegressor(max_depth=2, random_state=42)\n", "tree_reg2.fit(X, y2)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "y3 = y2 - tree_reg2.predict(X)\n", "tree_reg3 = DecisionTreeRegressor(max_depth=2, random_state=42)\n", "tree_reg3.fit(X, y3)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "X_new = np.array([[0.8]])" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "y_pred" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "def plot_predictions(regressors, X, y, axes, label=None, style=\"r-\", data_style=\"b.\", data_label=None):\n", " x1 = np.linspace(axes[0], axes[1], 500)\n", " y_pred = sum(regressor.predict(x1.reshape(-1, 1)) for regressor in regressors)\n", " plt.plot(X[:, 0], y, data_style, label=data_label)\n", " plt.plot(x1, y_pred, style, linewidth=2, label=label)\n", " if label or data_label:\n", " plt.legend(loc=\"upper center\", fontsize=16)\n", " plt.axis(axes)\n", "\n", "plt.figure(figsize=(11,11))\n", "\n", "plt.subplot(321)\n", "plot_predictions([tree_reg1], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label=\"$h_1(x_1)$\", style=\"g-\", data_label=\"Training set\")\n", "plt.ylabel(\"$y$\", fontsize=16, rotation=0)\n", "plt.title(\"Residuals and tree predictions\", fontsize=16)\n", "\n", "plt.subplot(322)\n", "plot_predictions([tree_reg1], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label=\"$h(x_1) = h_1(x_1)$\", data_label=\"Training set\")\n", "plt.ylabel(\"$y$\", fontsize=16, rotation=0)\n", "plt.title(\"Ensemble predictions\", fontsize=16)\n", "\n", "plt.subplot(323)\n", "plot_predictions([tree_reg2], X, y2, axes=[-0.5, 0.5, -0.5, 0.5], label=\"$h_2(x_1)$\", style=\"g-\", data_style=\"k+\", data_label=\"Residuals\")\n", "plt.ylabel(\"$y - h_1(x_1)$\", fontsize=16)\n", "\n", "plt.subplot(324)\n", "plot_predictions([tree_reg1, tree_reg2], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label=\"$h(x_1) = h_1(x_1) + h_2(x_1)$\")\n", "plt.ylabel(\"$y$\", fontsize=16, rotation=0)\n", "\n", "plt.subplot(325)\n", "plot_predictions([tree_reg3], X, y3, axes=[-0.5, 0.5, -0.5, 0.5], label=\"$h_3(x_1)$\", style=\"g-\", data_style=\"k+\")\n", "plt.ylabel(\"$y - h_1(x_1) - h_2(x_1)$\", fontsize=16)\n", "plt.xlabel(\"$x_1$\", fontsize=16)\n", "\n", "plt.subplot(326)\n", "plot_predictions([tree_reg1, tree_reg2, tree_reg3], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label=\"$h(x_1) = h_1(x_1) + h_2(x_1) + h_3(x_1)$\")\n", "plt.xlabel(\"$x_1$\", fontsize=16)\n", "plt.ylabel(\"$y$\", fontsize=16, rotation=0)\n", "\n", "save_fig(\"gradient_boosting_plot\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import GradientBoostingRegressor\n", "\n", "gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=3, learning_rate=1.0, random_state=42)\n", "gbrt.fit(X, y)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "gbrt_slow = GradientBoostingRegressor(max_depth=2, n_estimators=200, learning_rate=0.1, random_state=42)\n", "gbrt_slow.fit(X, y)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "plt.figure(figsize=(11,4))\n", "\n", "plt.subplot(121)\n", "plot_predictions([gbrt], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label=\"Ensemble predictions\")\n", "plt.title(\"learning_rate={}, n_estimators={}\".format(gbrt.learning_rate, gbrt.n_estimators), fontsize=14)\n", "\n", "plt.subplot(122)\n", "plot_predictions([gbrt_slow], X, y, axes=[-0.5, 0.5, -0.1, 0.8])\n", "plt.title(\"learning_rate={}, n_estimators={}\".format(gbrt_slow.learning_rate, gbrt_slow.n_estimators), fontsize=14)\n", "\n", "save_fig(\"gbrt_learning_rate_plot\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Gradient Boosting with Early stopping" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.metrics import mean_squared_error\n", "\n", "X_train, X_val, y_train, y_val = train_test_split(X, y, random_state=49)\n", "\n", "gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=120, random_state=42)\n", "gbrt.fit(X_train, y_train)\n", "\n", "errors = [mean_squared_error(y_val, y_pred)\n", " for y_pred in gbrt.staged_predict(X_val)]\n", "bst_n_estimators = np.argmin(errors)\n", "\n", "gbrt_best = GradientBoostingRegressor(max_depth=2,n_estimators=bst_n_estimators, random_state=42)\n", "gbrt_best.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "min_error = np.min(errors)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "plt.figure(figsize=(11, 4))\n", "\n", "plt.subplot(121)\n", "plt.plot(errors, \"b.-\")\n", "plt.plot([bst_n_estimators, bst_n_estimators], [0, min_error], \"k--\")\n", "plt.plot([0, 120], [min_error, min_error], \"k--\")\n", "plt.plot(bst_n_estimators, min_error, \"ko\")\n", "plt.text(bst_n_estimators, min_error*1.2, \"Minimum\", ha=\"center\", fontsize=14)\n", "plt.axis([0, 120, 0, 0.01])\n", "plt.xlabel(\"Number of trees\")\n", "plt.title(\"Validation error\", fontsize=14)\n", "\n", "plt.subplot(122)\n", "plot_predictions([gbrt_best], X, y, axes=[-0.5, 0.5, -0.1, 0.8])\n", "plt.title(\"Best model (%d trees)\" % bst_n_estimators, fontsize=14)\n", "\n", "save_fig(\"early_stopping_gbrt_plot\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [], "source": [ "gbrt = GradientBoostingRegressor(max_depth=2, warm_start=True, random_state=42)\n", "\n", "min_val_error = float(\"inf\")\n", "error_going_up = 0\n", "for n_estimators in range(1, 120):\n", " gbrt.n_estimators = n_estimators\n", " gbrt.fit(X_train, y_train)\n", " y_pred = gbrt.predict(X_val)\n", " val_error = mean_squared_error(y_val, y_pred)\n", " if val_error < min_val_error:\n", " min_val_error = val_error\n", " error_going_up = 0\n", " else:\n", " error_going_up += 1\n", " if error_going_up == 5:\n", " break # early stopping" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "print(gbrt.n_estimators)" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "print(\"Minimum validation MSE:\", min_val_error)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Using XGBoost" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [], "source": [ "try:\n", " import xgboost\n", "except ImportError as ex:\n", " print(\"Error: the xgboost library is not installed.\")\n", " xgboost = None" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [], "source": [ "if xgboost is not None: # not shown in the book\n", " xgb_reg = xgboost.XGBRegressor(random_state=42)\n", " xgb_reg.fit(X_train, y_train)\n", " y_pred = xgb_reg.predict(X_val)\n", " val_error = mean_squared_error(y_val, y_pred)\n", " print(\"Validation MSE:\", val_error)" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [], "source": [ "if xgboost is not None: # not shown in the book\n", " xgb_reg.fit(X_train, y_train,\n", " eval_set=[(X_val, y_val)], early_stopping_rounds=2)\n", " y_pred = xgb_reg.predict(X_val)\n", " val_error = mean_squared_error(y_val, y_pred)\n", " print(\"Validation MSE:\", val_error)" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [], "source": [ "%timeit xgboost.XGBRegressor().fit(X_train, y_train) if xgboost is not None else None" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [], "source": [ "%timeit GradientBoostingRegressor().fit(X_train, y_train)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Exercise solutions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. to 7." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "See Appendix A." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 8. Voting Classifier" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Exercise: _Load the MNIST data and split it into a training set, a validation set, and a test set (e.g., use 50,000 instances for training, 10,000 for validation, and 10,000 for testing)._" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The MNIST dataset was loaded earlier." ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [], "source": [ "X_train_val, X_test, y_train_val, y_test = train_test_split(\n", " mnist.data, mnist.target, test_size=10000, random_state=42)\n", "X_train, X_val, y_train, y_val = train_test_split(\n", " X_train_val, y_train_val, test_size=10000, random_state=42)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Exercise: _Then train various classifiers, such as a Random Forest classifier, an Extra-Trees classifier, and an SVM._" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier\n", "from sklearn.svm import LinearSVC\n", "from sklearn.neural_network import MLPClassifier" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [], "source": [ "random_forest_clf = RandomForestClassifier(n_estimators=10, random_state=42)\n", "extra_trees_clf = ExtraTreesClassifier(n_estimators=10, random_state=42)\n", "svm_clf = LinearSVC(random_state=42)\n", "mlp_clf = MLPClassifier(random_state=42)" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [], "source": [ "estimators = [random_forest_clf, extra_trees_clf, svm_clf, mlp_clf]\n", "for estimator in estimators:\n", " print(\"Training the\", estimator)\n", " estimator.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [], "source": [ "[estimator.score(X_val, y_val) for estimator in estimators]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The linear SVM is far outperformed by the other classifiers. However, let's keep it for now since it may improve the voting classifier's performance." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Exercise: _Next, try to combine them into an ensemble that outperforms them all on the validation set, using a soft or hard voting classifier._" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import VotingClassifier" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [], "source": [ "named_estimators = [\n", " (\"random_forest_clf\", random_forest_clf),\n", " (\"extra_trees_clf\", extra_trees_clf),\n", " (\"svm_clf\", svm_clf),\n", " (\"mlp_clf\", mlp_clf),\n", "]" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [], "source": [ "voting_clf = VotingClassifier(named_estimators)" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [], "source": [ "voting_clf.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [], "source": [ "voting_clf.score(X_val, y_val)" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [], "source": [ "[estimator.score(X_val, y_val) for estimator in voting_clf.estimators_]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's remove the SVM to see if performance improves. It is possible to remove an estimator by setting it to `None` using `set_params()` like this:" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [], "source": [ "voting_clf.set_params(svm_clf=None)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This updated the list of estimators:" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [], "source": [ "voting_clf.estimators" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "However, it did not update the list of _trained_ estimators:" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [], "source": [ "voting_clf.estimators_" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So we can either fit the `VotingClassifier` again, or just remove the SVM from the list of trained estimators:" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [], "source": [ "del voting_clf.estimators_[2]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's evaluate the `VotingClassifier` again:" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [], "source": [ "voting_clf.score(X_val, y_val)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A bit better! The SVM was hurting performance. Now let's try using a soft voting classifier. We do not actually need to retrain the classifier, we can just set `voting` to `\"soft\"`:" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [], "source": [ "voting_clf.voting = \"soft\"" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [], "source": [ "voting_clf.score(X_val, y_val)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That's a significant improvement, and it's much better than each of the individual classifiers." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "_Once you have found one, try it on the test set. How much better does it perform compared to the individual classifiers?_" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [], "source": [ "voting_clf.score(X_test, y_test)" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [], "source": [ "[estimator.score(X_test, y_test) for estimator in voting_clf.estimators_]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The voting classifier reduced the error rate from about 4.0% for our best model (the `MLPClassifier`) to just 3.1%. That's about 22.5% less errors, not bad!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 9. Stacking Ensemble" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Exercise: _Run the individual classifiers from the previous exercise to make predictions on the validation set, and create a new training set with the resulting predictions: each training instance is a vector containing the set of predictions from all your classifiers for an image, and the target is the image's class. Train a classifier on this new training set._" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [], "source": [ "X_val_predictions = np.empty((len(X_val), len(estimators)), dtype=np.float32)\n", "\n", "for index, estimator in enumerate(estimators):\n", " X_val_predictions[:, index] = estimator.predict(X_val)" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [], "source": [ "X_val_predictions" ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [], "source": [ "rnd_forest_blender = RandomForestClassifier(n_estimators=200, oob_score=True, random_state=42)\n", "rnd_forest_blender.fit(X_val_predictions, y_val)" ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [], "source": [ "rnd_forest_blender.oob_score_" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You could fine-tune this blender or try other types of blenders (e.g., an `MLPClassifier`), then select the best one using cross-validation, as always." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Exercise: _Congratulations, you have just trained a blender, and together with the classifiers they form a stacking ensemble! Now let's evaluate the ensemble on the test set. For each image in the test set, make predictions with all your classifiers, then feed the predictions to the blender to get the ensemble's predictions. How does it compare to the voting classifier you trained earlier?_" ] }, { "cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [], "source": [ "X_test_predictions = np.empty((len(X_test), len(estimators)), dtype=np.float32)\n", "\n", "for index, estimator in enumerate(estimators):\n", " X_test_predictions[:, index] = estimator.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 81, "metadata": {}, "outputs": [], "source": [ "y_pred = rnd_forest_blender.predict(X_test_predictions)" ] }, { "cell_type": "code", "execution_count": 82, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import accuracy_score" ] }, { "cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [], "source": [ "accuracy_score(y_test, y_pred)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This stacking ensemble does not perform as well as the soft voting classifier we trained earlier, it's just as good as the best individual classifier." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 - tf2", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" }, "nav_menu": { "height": "252px", "width": "333px" }, "toc": { "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 6, "toc_cell": false, "toc_section_display": "block", "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 1 }