# TensorFlow is much easier to install using Anaconda, especially # on Windows or when using a GPU. Please see the installation # instructions in INSTALL.md ##### Core scientific packages jupyter==1.0.0 matplotlib==3.1.2 numpy==1.17.3 pandas==0.25.3 scipy==1.3.1 ##### Machine Learning packages scikit-learn==0.22 # Optional: the XGBoost library is only used in chapter 7 xgboost==0.90 ##### TensorFlow-related packages # If you have a TF-compatible GPU and you want to enable GPU support, then # replace tensorflow with tensorflow-gpu, and replace tensorflow-serving-api # with tensorflow-serving-api-gpu. # Your GPU must have CUDA Compute Capability 3.5 or higher support, and # you must install CUDA, cuDNN and more: see tensorflow.org for the detailed # installation instructions. tensorflow==2.0.1 #tensorflow-gpu==2.0.0 # Optional: the TF Serving API library is just needed for chapter 19. tensorflow-serving-api==2.0.0 #tensorflow-serving-api-gpu==2.0.0 tensorboard==2.0.0 tensorflow-datasets==1.3.0 tensorflow-hub==0.6.0 tensorflow-probability==0.7 # Optional: only used in chapter 13. # NOT AVAILABLE ON WINDOWS tfx==0.15.0 # Optional: only used in chapter 16. # NOT AVAILABLE ON WINDOWS tensorflow-addons==0.6.0 ##### Reinforcement Learning library (chapter 18) # There are a few dependencies you need to install first, check out: # https://github.com/openai/gym#installing-everything gym[atari]==0.15.4 # On Windows, install atari_py using: # pip install --no-index -f https://github.com/Kojoley/atari-py/releases atari_py tf-agents==0.3.0rc0 ##### Image manipulation imageio==2.6.1 Pillow==6.2.1 scikit-image==0.16.2 graphviz pydot==1.4.1 opencv-python==4.1.2.30 pyglet==1.3.2 #pyvirtualdisplay # needed in chapter 16, if on a headless server # (i.e., without screen, e.g., Colab or VM) ##### Additional utilities # Efficient jobs (caching, parallelism, persistence) joblib==0.14.0 # Easy http requests requests==2.22.0 # Nice utility to diff Jupyter Notebooks. nbdime==1.1.0 # May be useful with Pandas for complex "where" clauses (e.g., Pandas # tutorial). numexpr==2.7.0 # Optional: these libraries can be useful in the classification chapter, # exercise 4. nltk==3.4.5 urlextract==0.13.0 # Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook support tqdm==4.40.0 ipywidgets==7.5.1