{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "**Chapter 16 – Natural Language Processing with RNNs and Attention**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "_This notebook contains all the sample code in chapter 16._" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", " \n", "
\n", " Run in Google Colab\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Setup" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Python ≥3.5 is required\n", "import sys\n", "assert sys.version_info >= (3, 5)\n", "\n", "# Scikit-Learn ≥0.20 is required\n", "import sklearn\n", "assert sklearn.__version__ >= \"0.20\"\n", "\n", "try:\n", " # %tensorflow_version only exists in Colab.\n", " %tensorflow_version 2.x\n", " !pip install -q -U tensorflow-addons\n", " IS_COLAB = True\n", "except Exception:\n", " IS_COLAB = False\n", "\n", "# TensorFlow ≥2.0 is required\n", "import tensorflow as tf\n", "from tensorflow import keras\n", "assert tf.__version__ >= \"2.0\"\n", "\n", "if not tf.config.list_physical_devices('GPU'):\n", " print(\"No GPU was detected. LSTMs and CNNs can be very slow without a GPU.\")\n", " if IS_COLAB:\n", " print(\"Go to Runtime > Change runtime and select a GPU hardware accelerator.\")\n", "\n", "# Common imports\n", "import numpy as np\n", "import os\n", "\n", "# to make this notebook's output stable across runs\n", "np.random.seed(42)\n", "tf.random.set_seed(42)\n", "\n", "# To plot pretty figures\n", "%matplotlib inline\n", "import matplotlib as mpl\n", "import matplotlib.pyplot as plt\n", "mpl.rc('axes', labelsize=14)\n", "mpl.rc('xtick', labelsize=12)\n", "mpl.rc('ytick', labelsize=12)\n", "\n", "# Where to save the figures\n", "PROJECT_ROOT_DIR = \".\"\n", "CHAPTER_ID = \"nlp\"\n", "IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID)\n", "os.makedirs(IMAGES_PATH, exist_ok=True)\n", "\n", "def save_fig(fig_id, tight_layout=True, fig_extension=\"png\", resolution=300):\n", " path = os.path.join(IMAGES_PATH, fig_id + \".\" + fig_extension)\n", " print(\"Saving figure\", fig_id)\n", " if tight_layout:\n", " plt.tight_layout()\n", " plt.savefig(path, format=fig_extension, dpi=resolution)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Char-RNN" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Splitting a sequence into batches of shuffled windows" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For example, let's split the sequence 0 to 14 into windows of length 5, each shifted by 2 (e.g.,`[0, 1, 2, 3, 4]`, `[2, 3, 4, 5, 6]`, etc.), then shuffle them, and split them into inputs (the first 4 steps) and targets (the last 4 steps) (e.g., `[2, 3, 4, 5, 6]` would be split into `[[2, 3, 4, 5], [3, 4, 5, 6]]`), then create batches of 3 such input/target pairs:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "scrolled": true }, "outputs": [], "source": [ "np.random.seed(42)\n", "tf.random.set_seed(42)\n", "\n", "n_steps = 5\n", "dataset = tf.data.Dataset.from_tensor_slices(tf.range(15))\n", "dataset = dataset.window(n_steps, shift=2, drop_remainder=True)\n", "dataset = dataset.flat_map(lambda window: window.batch(n_steps))\n", "dataset = dataset.shuffle(10).map(lambda window: (window[:-1], window[1:]))\n", "dataset = dataset.batch(3).prefetch(1)\n", "for index, (X_batch, Y_batch) in enumerate(dataset):\n", " print(\"_\" * 20, \"Batch\", index, \"\\nX_batch\")\n", " print(X_batch.numpy())\n", " print(\"=\" * 5, \"\\nY_batch\")\n", " print(Y_batch.numpy())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Loading the Data and Preparing the Dataset" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "shakespeare_url = \"https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt\"\n", "filepath = keras.utils.get_file(\"shakespeare.txt\", shakespeare_url)\n", "with open(filepath) as f:\n", " shakespeare_text = f.read()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "print(shakespeare_text[:148])" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "\"\".join(sorted(set(shakespeare_text.lower())))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "tokenizer = keras.preprocessing.text.Tokenizer(char_level=True)\n", "tokenizer.fit_on_texts(shakespeare_text)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "tokenizer.texts_to_sequences([\"First\"])" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "tokenizer.sequences_to_texts([[20, 6, 9, 8, 3]])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "max_id = len(tokenizer.word_index) # number of distinct characters\n", "dataset_size = tokenizer.document_count # total number of characters" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "[encoded] = np.array(tokenizer.texts_to_sequences([shakespeare_text])) - 1\n", "train_size = dataset_size * 90 // 100\n", "dataset = tf.data.Dataset.from_tensor_slices(encoded[:train_size])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "n_steps = 100\n", "window_length = n_steps + 1 # target = input shifted 1 character ahead\n", "dataset = dataset.repeat().window(window_length, shift=1, drop_remainder=True)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "dataset = dataset.flat_map(lambda window: window.batch(window_length))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "np.random.seed(42)\n", "tf.random.set_seed(42)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "batch_size = 32\n", "dataset = dataset.shuffle(10000).batch(batch_size)\n", "dataset = dataset.map(lambda windows: (windows[:, :-1], windows[:, 1:]))" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "dataset = dataset.map(\n", " lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "dataset = dataset.prefetch(1)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "for X_batch, Y_batch in dataset.take(1):\n", " print(X_batch.shape, Y_batch.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Creating and Training the Model" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "model = keras.models.Sequential([\n", " keras.layers.GRU(128, return_sequences=True, input_shape=[None, max_id],\n", " dropout=0.2, recurrent_dropout=0.2),\n", " keras.layers.GRU(128, return_sequences=True,\n", " dropout=0.2, recurrent_dropout=0.2),\n", " keras.layers.TimeDistributed(keras.layers.Dense(max_id,\n", " activation=\"softmax\"))\n", "])\n", "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\")\n", "history = model.fit(dataset, steps_per_epoch=train_size // batch_size,\n", " epochs=10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Using the Model to Generate Text" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "def preprocess(texts):\n", " X = np.array(tokenizer.texts_to_sequences(texts)) - 1\n", " return tf.one_hot(X, max_id)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "X_new = preprocess([\"How are yo\"])\n", "Y_pred = model.predict_classes(X_new)\n", "tokenizer.sequences_to_texts(Y_pred + 1)[0][-1] # 1st sentence, last char" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "\n", "tf.random.categorical([[np.log(0.5), np.log(0.4), np.log(0.1)]], num_samples=40).numpy()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "def next_char(text, temperature=1):\n", " X_new = preprocess([text])\n", " y_proba = model.predict(X_new)[0, -1:, :]\n", " rescaled_logits = tf.math.log(y_proba) / temperature\n", " char_id = tf.random.categorical(rescaled_logits, num_samples=1) + 1\n", " return tokenizer.sequences_to_texts(char_id.numpy())[0]" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "\n", "next_char(\"How are yo\", temperature=1)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "def complete_text(text, n_chars=50, temperature=1):\n", " for _ in range(n_chars):\n", " text += next_char(text, temperature)\n", " return text" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "\n", "print(complete_text(\"t\", temperature=0.2))" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "print(complete_text(\"t\", temperature=1))" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "print(complete_text(\"t\", temperature=2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Stateful RNN" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "dataset = tf.data.Dataset.from_tensor_slices(encoded[:train_size])\n", "dataset = dataset.window(window_length, shift=n_steps, drop_remainder=True)\n", "dataset = dataset.flat_map(lambda window: window.batch(window_length))\n", "dataset = dataset.repeat().batch(1)\n", "dataset = dataset.map(lambda windows: (windows[:, :-1], windows[:, 1:]))\n", "dataset = dataset.map(\n", " lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))\n", "dataset = dataset.prefetch(1)" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "batch_size = 32\n", "encoded_parts = np.array_split(encoded[:train_size], batch_size)\n", "datasets = []\n", "for encoded_part in encoded_parts:\n", " dataset = tf.data.Dataset.from_tensor_slices(encoded_part)\n", " dataset = dataset.window(window_length, shift=n_steps, drop_remainder=True)\n", " dataset = dataset.flat_map(lambda window: window.batch(window_length))\n", " datasets.append(dataset)\n", "dataset = tf.data.Dataset.zip(tuple(datasets)).map(lambda *windows: tf.stack(windows))\n", "dataset = dataset.repeat().map(lambda windows: (windows[:, :-1], windows[:, 1:]))\n", "dataset = dataset.map(\n", " lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))\n", "dataset = dataset.prefetch(1)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "model = keras.models.Sequential([\n", " keras.layers.GRU(128, return_sequences=True, stateful=True,\n", " dropout=0.2, recurrent_dropout=0.2,\n", " batch_input_shape=[batch_size, None, max_id]),\n", " keras.layers.GRU(128, return_sequences=True, stateful=True,\n", " dropout=0.2, recurrent_dropout=0.2),\n", " keras.layers.TimeDistributed(keras.layers.Dense(max_id,\n", " activation=\"softmax\"))\n", "])" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "class ResetStatesCallback(keras.callbacks.Callback):\n", " def on_epoch_begin(self, epoch, logs):\n", " self.model.reset_states()" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\")\n", "steps_per_epoch = train_size // batch_size // n_steps\n", "model.fit(dataset, steps_per_epoch=steps_per_epoch, epochs=50,\n", " callbacks=[ResetStatesCallback()])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To use the model with different batch sizes, we need to create a stateless copy. We can get rid of dropout since it is only used during training:" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "stateless_model = keras.models.Sequential([\n", " keras.layers.GRU(128, return_sequences=True, input_shape=[None, max_id]),\n", " keras.layers.GRU(128, return_sequences=True),\n", " keras.layers.TimeDistributed(keras.layers.Dense(max_id,\n", " activation=\"softmax\"))\n", "])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To set the weights, we first need to build the model (so the weights get created):" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "stateless_model.build(tf.TensorShape([None, None, max_id]))" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "stateless_model.set_weights(model.get_weights())\n", "model = stateless_model" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "\n", "print(complete_text(\"t\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Sentiment Analysis" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can load the IMDB dataset easily:" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "(X_train, y_test), (X_valid, y_test) = keras.datasets.imdb.load_data()" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "X_train[0][:10]" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "word_index = keras.datasets.imdb.get_word_index()\n", "id_to_word = {id_ + 3: word for word, id_ in word_index.items()}\n", "for id_, token in enumerate((\"\", \"\", \"\")):\n", " id_to_word[id_] = token\n", "\" \".join([id_to_word[id_] for id_ in X_train[0][:10]])" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "import tensorflow_datasets as tfds\n", "\n", "datasets, info = tfds.load(\"imdb_reviews\", as_supervised=True, with_info=True)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "datasets.keys()" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "train_size = info.splits[\"train\"].num_examples\n", "test_size = info.splits[\"test\"].num_examples" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "train_size, test_size" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "for X_batch, y_batch in datasets[\"train\"].batch(2).take(1):\n", " for review, label in zip(X_batch.numpy(), y_batch.numpy()):\n", " print(\"Review:\", review.decode(\"utf-8\")[:200], \"...\")\n", " print(\"Label:\", label, \"= Positive\" if label else \"= Negative\")\n", " print()" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [], "source": [ "def preprocess(X_batch, y_batch):\n", " X_batch = tf.strings.substr(X_batch, 0, 300)\n", " X_batch = tf.strings.regex_replace(X_batch, rb\"\", b\" \")\n", " X_batch = tf.strings.regex_replace(X_batch, b\"[^a-zA-Z']\", b\" \")\n", " X_batch = tf.strings.split(X_batch)\n", " return X_batch.to_tensor(default_value=b\"\"), y_batch" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "preprocess(X_batch, y_batch)" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "from collections import Counter\n", "\n", "vocabulary = Counter()\n", "for X_batch, y_batch in datasets[\"train\"].batch(32).map(preprocess):\n", " for review in X_batch:\n", " vocabulary.update(list(review.numpy()))" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [], "source": [ "vocabulary.most_common()[:3]" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [], "source": [ "len(vocabulary)" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [], "source": [ "vocab_size = 10000\n", "truncated_vocabulary = [\n", " word for word, count in vocabulary.most_common()[:vocab_size]]" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [], "source": [ "word_to_id = {word: index for index, word in enumerate(truncated_vocabulary)}\n", "for word in b\"This movie was faaaaaantastic\".split():\n", " print(word_to_id.get(word) or vocab_size)" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [], "source": [ "words = tf.constant(truncated_vocabulary)\n", "word_ids = tf.range(len(truncated_vocabulary), dtype=tf.int64)\n", "vocab_init = tf.lookup.KeyValueTensorInitializer(words, word_ids)\n", "num_oov_buckets = 1000\n", "table = tf.lookup.StaticVocabularyTable(vocab_init, num_oov_buckets)" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "table.lookup(tf.constant([b\"This movie was faaaaaantastic\".split()]))" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [], "source": [ "def encode_words(X_batch, y_batch):\n", " return table.lookup(X_batch), y_batch\n", "\n", "train_set = datasets[\"train\"].repeat().batch(32).map(preprocess)\n", "train_set = train_set.map(encode_words).prefetch(1)" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [], "source": [ "for X_batch, y_batch in train_set.take(1):\n", " print(X_batch)\n", " print(y_batch)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [], "source": [ "embed_size = 128\n", "model = keras.models.Sequential([\n", " keras.layers.Embedding(vocab_size + num_oov_buckets, embed_size,\n", " mask_zero=True, # not shown in the book\n", " input_shape=[None]),\n", " keras.layers.GRU(128, return_sequences=True),\n", " keras.layers.GRU(128),\n", " keras.layers.Dense(1, activation=\"sigmoid\")\n", "])\n", "model.compile(loss=\"binary_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", "history = model.fit(train_set, steps_per_epoch=train_size // 32, epochs=5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Or using manual masking:" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [], "source": [ "K = keras.backend\n", "embed_size = 128\n", "inputs = keras.layers.Input(shape=[None])\n", "mask = keras.layers.Lambda(lambda inputs: K.not_equal(inputs, 0))(inputs)\n", "z = keras.layers.Embedding(vocab_size + num_oov_buckets, embed_size)(inputs)\n", "z = keras.layers.GRU(128, return_sequences=True)(z, mask=mask)\n", "z = keras.layers.GRU(128)(z, mask=mask)\n", "outputs = keras.layers.Dense(1, activation=\"sigmoid\")(z)\n", "model = keras.models.Model(inputs=[inputs], outputs=[outputs])\n", "model.compile(loss=\"binary_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", "history = model.fit(train_set, steps_per_epoch=train_size // 32, epochs=5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reusing Pretrained Embeddings" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [], "source": [ "TFHUB_CACHE_DIR = os.path.join(os.curdir, \"my_tfhub_cache\")\n", "os.environ[\"TFHUB_CACHE_DIR\"] = TFHUB_CACHE_DIR" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [], "source": [ "import tensorflow_hub as hub\n", "\n", "model = keras.Sequential([\n", " hub.KerasLayer(\"https://tfhub.dev/google/tf2-preview/nnlm-en-dim50/1\",\n", " dtype=tf.string, input_shape=[], output_shape=[50]),\n", " keras.layers.Dense(128, activation=\"relu\"),\n", " keras.layers.Dense(1, activation=\"sigmoid\")\n", "])\n", "model.compile(loss=\"binary_crossentropy\", optimizer=\"adam\",\n", " metrics=[\"accuracy\"])" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [], "source": [ "for dirpath, dirnames, filenames in os.walk(TFHUB_CACHE_DIR):\n", " for filename in filenames:\n", " print(os.path.join(dirpath, filename))" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [], "source": [ "import tensorflow_datasets as tfds\n", "\n", "datasets, info = tfds.load(\"imdb_reviews\", as_supervised=True, with_info=True)\n", "train_size = info.splits[\"train\"].num_examples\n", "batch_size = 32\n", "train_set = datasets[\"train\"].repeat().batch(batch_size).prefetch(1)\n", "history = model.fit(train_set, steps_per_epoch=train_size // batch_size, epochs=5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Automatic Translation" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [], "source": [ "vocab_size = 100\n", "embed_size = 10" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [], "source": [ "import tensorflow_addons as tfa\n", "\n", "encoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)\n", "decoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)\n", "sequence_lengths = keras.layers.Input(shape=[], dtype=np.int32)\n", "\n", "embeddings = keras.layers.Embedding(vocab_size, embed_size)\n", "encoder_embeddings = embeddings(encoder_inputs)\n", "decoder_embeddings = embeddings(decoder_inputs)\n", "\n", "encoder = keras.layers.LSTM(512, return_state=True)\n", "encoder_outputs, state_h, state_c = encoder(encoder_embeddings)\n", "encoder_state = [state_h, state_c]\n", "\n", "sampler = tfa.seq2seq.sampler.TrainingSampler()\n", "\n", "decoder_cell = keras.layers.LSTMCell(512)\n", "output_layer = keras.layers.Dense(vocab_size)\n", "decoder = tfa.seq2seq.basic_decoder.BasicDecoder(decoder_cell, sampler,\n", " output_layer=output_layer)\n", "final_outputs, final_state, final_sequence_lengths = decoder(\n", " decoder_embeddings, initial_state=encoder_state,\n", " sequence_length=sequence_lengths)\n", "Y_proba = tf.nn.softmax(final_outputs.rnn_output)\n", "\n", "model = keras.models.Model(\n", " inputs=[encoder_inputs, decoder_inputs, sequence_lengths],\n", " outputs=[Y_proba])" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [], "source": [ "model.compile(loss=\"sparse_categorical_crossentropy\", optimizer=\"adam\")" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [], "source": [ "X = np.random.randint(100, size=10*1000).reshape(1000, 10)\n", "Y = np.random.randint(100, size=15*1000).reshape(1000, 15)\n", "X_decoder = np.c_[np.zeros((1000, 1)), Y[:, :-1]]\n", "seq_lengths = np.full([1000], 15)\n", "\n", "history = model.fit([X, X_decoder, seq_lengths], Y, epochs=2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Bidirectional Recurrent Layers" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [], "source": [ "model = keras.models.Sequential([\n", " keras.layers.GRU(10, return_sequences=True, input_shape=[None, 10]),\n", " keras.layers.Bidirectional(keras.layers.GRU(10, return_sequences=True))\n", "])\n", "\n", "model.summary()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Positional Encoding" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [], "source": [ "class PositionalEncoding(keras.layers.Layer):\n", " def __init__(self, max_steps, max_dims, dtype=tf.float32, **kwargs):\n", " super().__init__(dtype=dtype, **kwargs)\n", " if max_dims % 2 == 1: max_dims += 1 # max_dims must be even\n", " p, i = np.meshgrid(np.arange(max_steps), np.arange(max_dims // 2))\n", " pos_emb = np.empty((1, max_steps, max_dims))\n", " pos_emb[0, :, ::2] = np.sin(p / 10000**(2 * i / max_dims)).T\n", " pos_emb[0, :, 1::2] = np.cos(p / 10000**(2 * i / max_dims)).T\n", " self.positional_embedding = tf.constant(pos_emb.astype(self.dtype))\n", " def call(self, inputs):\n", " shape = tf.shape(inputs)\n", " return inputs + self.positional_embedding[:, :shape[-2], :shape[-1]]" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [], "source": [ "max_steps = 201\n", "max_dims = 512\n", "pos_emb = PositionalEncoding(max_steps, max_dims)\n", "PE = pos_emb(np.zeros((1, max_steps, max_dims), np.float32))[0].numpy()" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [], "source": [ "i1, i2, crop_i = 100, 101, 150\n", "p1, p2, p3 = 22, 60, 35\n", "fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=(9, 5))\n", "ax1.plot([p1, p1], [-1, 1], \"k--\", label=\"$p = {}$\".format(p1))\n", "ax1.plot([p2, p2], [-1, 1], \"k--\", label=\"$p = {}$\".format(p2), alpha=0.5)\n", "ax1.plot(p3, PE[p3, i1], \"bx\", label=\"$p = {}$\".format(p3))\n", "ax1.plot(PE[:,i1], \"b-\", label=\"$i = {}$\".format(i1))\n", "ax1.plot(PE[:,i2], \"r-\", label=\"$i = {}$\".format(i2))\n", "ax1.plot([p1, p2], [PE[p1, i1], PE[p2, i1]], \"bo\")\n", "ax1.plot([p1, p2], [PE[p1, i2], PE[p2, i2]], \"ro\")\n", "ax1.legend(loc=\"center right\", fontsize=14, framealpha=0.95)\n", "ax1.set_ylabel(\"$P_{(p,i)}$\", rotation=0, fontsize=16)\n", "ax1.grid(True, alpha=0.3)\n", "ax1.hlines(0, 0, max_steps - 1, color=\"k\", linewidth=1, alpha=0.3)\n", "ax1.axis([0, max_steps - 1, -1, 1])\n", "ax2.imshow(PE.T[:crop_i], cmap=\"gray\", interpolation=\"bilinear\", aspect=\"auto\")\n", "ax2.hlines(i1, 0, max_steps - 1, color=\"b\")\n", "cheat = 2 # need to raise the red line a bit, or else it hides the blue one\n", "ax2.hlines(i2+cheat, 0, max_steps - 1, color=\"r\")\n", "ax2.plot([p1, p1], [0, crop_i], \"k--\")\n", "ax2.plot([p2, p2], [0, crop_i], \"k--\", alpha=0.5)\n", "ax2.plot([p1, p2], [i2+cheat, i2+cheat], \"ro\")\n", "ax2.plot([p1, p2], [i1, i1], \"bo\")\n", "ax2.axis([0, max_steps - 1, 0, crop_i])\n", "ax2.set_xlabel(\"$p$\", fontsize=16)\n", "ax2.set_ylabel(\"$i$\", rotation=0, fontsize=16)\n", "plt.savefig(\"positional_embedding_plot\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [], "source": [ "embed_size = 512; max_steps = 500; vocab_size = 10000\n", "encoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)\n", "decoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)\n", "embeddings = keras.layers.Embedding(vocab_size, embed_size)\n", "encoder_embeddings = embeddings(encoder_inputs)\n", "decoder_embeddings = embeddings(decoder_inputs)\n", "positional_encoding = PositionalEncoding(max_steps, max_dims=embed_size)\n", "encoder_in = positional_encoding(encoder_embeddings)\n", "decoder_in = positional_encoding(decoder_embeddings)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here is a (very) simplified Transformer (the actual architecture has skip connections, layer norm, dense nets, and most importantly it uses Multi-Head Attention instead of regular Attention):" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [], "source": [ "Z = encoder_in\n", "for N in range(6):\n", " Z = keras.layers.Attention(use_scale=True)([Z, Z])\n", "\n", "encoder_outputs = Z\n", "Z = decoder_in\n", "for N in range(6):\n", " Z = keras.layers.Attention(use_scale=True, causal=True)([Z, Z])\n", " Z = keras.layers.Attention(use_scale=True)([Z, encoder_outputs])\n", "\n", "outputs = keras.layers.TimeDistributed(\n", " keras.layers.Dense(vocab_size, activation=\"softmax\"))(Z)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here's a basic implementation of the `MultiHeadAttention` layer. One will likely be added to `keras.layers` in the near future. Note that `Conv1D` layers with `kernel_size=1` (and the default `padding=\"valid\"` and `strides=1`) is equivalent to a `TimeDistributed(Dense(...))` layer." ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [], "source": [ "K = keras.backend\n", "\n", "class MultiHeadAttention(keras.layers.Layer):\n", " def __init__(self, n_heads, causal=False, use_scale=False, **kwargs):\n", " self.n_heads = n_heads\n", " self.causal = causal\n", " self.use_scale = use_scale\n", " super().__init__(**kwargs)\n", " def build(self, batch_input_shape):\n", " self.dims = batch_input_shape[0][-1]\n", " self.q_dims, self.v_dims, self.k_dims = [self.dims // self.n_heads] * 3 # could be hyperparameters instead\n", " self.q_linear = keras.layers.Conv1D(self.n_heads * self.q_dims, kernel_size=1, use_bias=False)\n", " self.v_linear = keras.layers.Conv1D(self.n_heads * self.v_dims, kernel_size=1, use_bias=False)\n", " self.k_linear = keras.layers.Conv1D(self.n_heads * self.k_dims, kernel_size=1, use_bias=False)\n", " self.attention = keras.layers.Attention(causal=self.causal, use_scale=self.use_scale)\n", " self.out_linear = keras.layers.Conv1D(self.dims, kernel_size=1, use_bias=False)\n", " super().build(batch_input_shape)\n", " def _multi_head_linear(self, inputs, linear):\n", " shape = K.concatenate([K.shape(inputs)[:-1], [self.n_heads, -1]])\n", " projected = K.reshape(linear(inputs), shape)\n", " perm = K.permute_dimensions(projected, [0, 2, 1, 3])\n", " return K.reshape(perm, [shape[0] * self.n_heads, shape[1], -1])\n", " def call(self, inputs):\n", " q = inputs[0]\n", " v = inputs[1]\n", " k = inputs[2] if len(inputs) > 2 else v\n", " shape = K.shape(q)\n", " q_proj = self._multi_head_linear(q, self.q_linear)\n", " v_proj = self._multi_head_linear(v, self.v_linear)\n", " k_proj = self._multi_head_linear(k, self.k_linear)\n", " multi_attended = self.attention([q_proj, v_proj, k_proj])\n", " shape_attended = K.shape(multi_attended)\n", " reshaped_attended = K.reshape(multi_attended, [shape[0], self.n_heads, shape_attended[1], shape_attended[2]])\n", " perm = K.permute_dimensions(reshaped_attended, [0, 2, 1, 3])\n", " concat = K.reshape(perm, [shape[0], shape_attended[1], -1])\n", " return self.out_linear(concat)" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [], "source": [ "Q = np.random.rand(2, 50, 512)\n", "V = np.random.rand(2, 80, 512)\n", "multi_attn = MultiHeadAttention(8)\n", "multi_attn([Q, V]).shape" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" }, "nav_menu": {}, "toc": { "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 6, "toc_cell": false, "toc_section_display": "block", "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }