# First make sure to update pip: # $ sudo pip install --upgrade pip # # Then you probably want to work in a virtualenv (optional): # $ sudo pip install --upgrade virtualenv # Or if you prefer you can install virtualenv using your favorite packaging # system. E.g., in Ubuntu: # $ sudo apt-get update && sudo apt-get install virtualenv # Then: # $ cd $my_work_dir # $ virtualenv my_env # $ . my_env/bin/activate # # Next, optionally uncomment the OpenAI gym lines (see below). # If you do, make sure to install the dependencies first. # If you are interested in xgboost for high performance Gradient Boosting, you # should uncomment the xgboost line (used in the ensemble learning notebook). # # Then install these requirements: # $ pip install --upgrade -r requirements.txt # # Finally, start jupyter: # $ jupyter notebook # ##### Core scientific packages jupyter==1.0.0 matplotlib==2.2.2 numpy==1.14.3 pandas==0.22.0 scipy==1.1.0 ##### Machine Learning packages scikit-learn==0.19.1 # Optional: the XGBoost library is only used in the ensemble learning chapter. #xgboost==0.71 ##### Deep Learning packages # Replace tensorflow with tensorflow-gpu if you want GPU support. If so, # you need a GPU card with CUDA Compute Capability 3.0 or higher support, and # you must install CUDA, cuDNN and more: see tensorflow.org for the detailed # installation instructions. tensorflow==1.8.0 #tensorflow-gpu==1.8.0 # Forcing bleach to 1.5 to avoid version incompatibility when installing # TensorBoard. bleach==1.5.0 Keras==2.1.6 # Optional: OpenAI gym is only needed for the Reinforcement Learning chapter. # There are a few dependencies you need to install first, check out: # https://github.com/openai/gym#installing-everything #gym[all]==0.10.5 # If you only want to install the Atari dependency, uncomment this line instead: #gym[atari]==0.10.5 ##### Image manipulation imageio==2.3.0 Pillow==5.1.0 scikit-image==0.13.1 ##### Extra packages (optional) # Nice utility to diff Jupyter Notebooks. nbdime==0.4.1 # May be useful with Pandas for complex "where" clauses (e.g., Pandas # tutorial). numexpr==2.6.5 # These libraries can be useful in the classification chapter, exercise 4. nltk==3.3 urlextract==0.8.3 # Optional: these are useful Jupyter extensions, in particular to display # the table of contents. jupyter-contrib-nbextensions==0.5.0