{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "**Chapter 1 – The Machine Learning landscape**\n", "\n", "_This is the code used to generate some of the figures in chapter 1._" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", " \n", "
\n", " Run in Google Colab\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Code example 1-1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "# Python ≥3.5 is required\n", "import sys\n", "assert sys.version_info >= (3, 5)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Scikit-Learn ≥0.20 is required\n", "import sklearn\n", "assert sklearn.__version__ >= \"0.20\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This function just merges the OECD's life satisfaction data and the IMF's GDP per capita data. It's a bit too long and boring and it's not specific to Machine Learning, which is why I left it out of the book." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def prepare_country_stats(oecd_bli, gdp_per_capita):\n", " oecd_bli = oecd_bli[oecd_bli[\"INEQUALITY\"]==\"TOT\"]\n", " oecd_bli = oecd_bli.pivot(index=\"Country\", columns=\"Indicator\", values=\"Value\")\n", " gdp_per_capita.rename(columns={\"2015\": \"GDP per capita\"}, inplace=True)\n", " gdp_per_capita.set_index(\"Country\", inplace=True)\n", " full_country_stats = pd.merge(left=oecd_bli, right=gdp_per_capita,\n", " left_index=True, right_index=True)\n", " full_country_stats.sort_values(by=\"GDP per capita\", inplace=True)\n", " remove_indices = [0, 1, 6, 8, 33, 34, 35]\n", " keep_indices = list(set(range(36)) - set(remove_indices))\n", " return full_country_stats[[\"GDP per capita\", 'Life satisfaction']].iloc[keep_indices]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The code in the book expects the data files to be located in the current directory. I just tweaked it here to fetch the files in datasets/lifesat." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import os\n", "datapath = os.path.join(\"datasets\", \"lifesat\", \"\")" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# To plot pretty figures directly within Jupyter\n", "%matplotlib inline\n", "import matplotlib as mpl\n", "mpl.rc('axes', labelsize=14)\n", "mpl.rc('xtick', labelsize=12)\n", "mpl.rc('ytick', labelsize=12)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# Download the data\n", "import urllib\n", "DOWNLOAD_ROOT = \"https://raw.githubusercontent.com/ageron/handson-ml2/master/\"\n", "os.makedirs(datapath, exist_ok=True)\n", "for filename in (\"oecd_bli_2015.csv\", \"gdp_per_capita.csv\"):\n", " print(\"Downloading\", filename)\n", " url = DOWNLOAD_ROOT + \"datasets/lifesat/\" + filename\n", " urllib.request.urlretrieve(url, datapath + filename)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Code example\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import sklearn.linear_model\n", "\n", "# Load the data\n", "oecd_bli = pd.read_csv(datapath + \"oecd_bli_2015.csv\", thousands=',')\n", "gdp_per_capita = pd.read_csv(datapath + \"gdp_per_capita.csv\",thousands=',',delimiter='\\t',\n", " encoding='latin1', na_values=\"n/a\")\n", "\n", "# Prepare the data\n", "country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)\n", "X = np.c_[country_stats[\"GDP per capita\"]]\n", "y = np.c_[country_stats[\"Life satisfaction\"]]\n", "\n", "# Visualize the data\n", "country_stats.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction')\n", "plt.show()\n", "\n", "# Select a linear model\n", "model = sklearn.linear_model.LinearRegression()\n", "\n", "# Train the model\n", "model.fit(X, y)\n", "\n", "# Make a prediction for Cyprus\n", "X_new = [[22587]] # Cyprus' GDP per capita\n", "print(model.predict(X_new)) # outputs [[ 5.96242338]]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Note: you can ignore the rest of this notebook, it just generates many of the figures in chapter 1." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a function to save the figures." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# Where to save the figures\n", "PROJECT_ROOT_DIR = \".\"\n", "CHAPTER_ID = \"fundamentals\"\n", "IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID)\n", "os.makedirs(IMAGES_PATH, exist_ok=True)\n", "\n", "def save_fig(fig_id, tight_layout=True, fig_extension=\"png\", resolution=300):\n", " path = os.path.join(IMAGES_PATH, fig_id + \".\" + fig_extension)\n", " print(\"Saving figure\", fig_id)\n", " if tight_layout:\n", " plt.tight_layout()\n", " plt.savefig(path, format=fig_extension, dpi=resolution)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Make this notebook's output stable across runs:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "np.random.seed(42)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Load and prepare Life satisfaction data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you want, you can get fresh data from the OECD's website.\n", "Download the CSV from http://stats.oecd.org/index.aspx?DataSetCode=BLI\n", "and save it to `datasets/lifesat/`." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "oecd_bli = pd.read_csv(datapath + \"oecd_bli_2015.csv\", thousands=',')\n", "oecd_bli = oecd_bli[oecd_bli[\"INEQUALITY\"]==\"TOT\"]\n", "oecd_bli = oecd_bli.pivot(index=\"Country\", columns=\"Indicator\", values=\"Value\")\n", "oecd_bli.head(2)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "oecd_bli[\"Life satisfaction\"].head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Load and prepare GDP per capita data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Just like above, you can update the GDP per capita data if you want. Just download data from http://goo.gl/j1MSKe (=> imf.org) and save it to `datasets/lifesat/`." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "gdp_per_capita = pd.read_csv(datapath+\"gdp_per_capita.csv\", thousands=',', delimiter='\\t',\n", " encoding='latin1', na_values=\"n/a\")\n", "gdp_per_capita.rename(columns={\"2015\": \"GDP per capita\"}, inplace=True)\n", "gdp_per_capita.set_index(\"Country\", inplace=True)\n", "gdp_per_capita.head(2)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "full_country_stats = pd.merge(left=oecd_bli, right=gdp_per_capita, left_index=True, right_index=True)\n", "full_country_stats.sort_values(by=\"GDP per capita\", inplace=True)\n", "full_country_stats" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "full_country_stats[[\"GDP per capita\", 'Life satisfaction']].loc[\"United States\"]" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "remove_indices = [0, 1, 6, 8, 33, 34, 35]\n", "keep_indices = list(set(range(36)) - set(remove_indices))\n", "\n", "sample_data = full_country_stats[[\"GDP per capita\", 'Life satisfaction']].iloc[keep_indices]\n", "missing_data = full_country_stats[[\"GDP per capita\", 'Life satisfaction']].iloc[remove_indices]" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(5,3))\n", "plt.axis([0, 60000, 0, 10])\n", "position_text = {\n", " \"Hungary\": (5000, 1),\n", " \"Korea\": (18000, 1.7),\n", " \"France\": (29000, 2.4),\n", " \"Australia\": (40000, 3.0),\n", " \"United States\": (52000, 3.8),\n", "}\n", "for country, pos_text in position_text.items():\n", " pos_data_x, pos_data_y = sample_data.loc[country]\n", " country = \"U.S.\" if country == \"United States\" else country\n", " plt.annotate(country, xy=(pos_data_x, pos_data_y), xytext=pos_text,\n", " arrowprops=dict(facecolor='black', width=0.5, shrink=0.1, headwidth=5))\n", " plt.plot(pos_data_x, pos_data_y, \"ro\")\n", "plt.xlabel(\"GDP per capita (USD)\")\n", "save_fig('money_happy_scatterplot')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "sample_data.to_csv(os.path.join(\"datasets\", \"lifesat\", \"lifesat.csv\"))" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "sample_data.loc[list(position_text.keys())]" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(5,3))\n", "plt.xlabel(\"GDP per capita (USD)\")\n", "plt.axis([0, 60000, 0, 10])\n", "X=np.linspace(0, 60000, 1000)\n", "plt.plot(X, 2*X/100000, \"r\")\n", "plt.text(40000, 2.7, r\"$\\theta_0 = 0$\", fontsize=14, color=\"r\")\n", "plt.text(40000, 1.8, r\"$\\theta_1 = 2 \\times 10^{-5}$\", fontsize=14, color=\"r\")\n", "plt.plot(X, 8 - 5*X/100000, \"g\")\n", "plt.text(5000, 9.1, r\"$\\theta_0 = 8$\", fontsize=14, color=\"g\")\n", "plt.text(5000, 8.2, r\"$\\theta_1 = -5 \\times 10^{-5}$\", fontsize=14, color=\"g\")\n", "plt.plot(X, 4 + 5*X/100000, \"b\")\n", "plt.text(5000, 3.5, r\"$\\theta_0 = 4$\", fontsize=14, color=\"b\")\n", "plt.text(5000, 2.6, r\"$\\theta_1 = 5 \\times 10^{-5}$\", fontsize=14, color=\"b\")\n", "save_fig('tweaking_model_params_plot')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "from sklearn import linear_model\n", "lin1 = linear_model.LinearRegression()\n", "Xsample = np.c_[sample_data[\"GDP per capita\"]]\n", "ysample = np.c_[sample_data[\"Life satisfaction\"]]\n", "lin1.fit(Xsample, ysample)\n", "t0, t1 = lin1.intercept_[0], lin1.coef_[0][0]\n", "t0, t1" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(5,3))\n", "plt.xlabel(\"GDP per capita (USD)\")\n", "plt.axis([0, 60000, 0, 10])\n", "X=np.linspace(0, 60000, 1000)\n", "plt.plot(X, t0 + t1*X, \"b\")\n", "plt.text(5000, 3.1, r\"$\\theta_0 = 4.85$\", fontsize=14, color=\"b\")\n", "plt.text(5000, 2.2, r\"$\\theta_1 = 4.91 \\times 10^{-5}$\", fontsize=14, color=\"b\")\n", "save_fig('best_fit_model_plot')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "cyprus_gdp_per_capita = gdp_per_capita.loc[\"Cyprus\"][\"GDP per capita\"]\n", "print(cyprus_gdp_per_capita)\n", "cyprus_predicted_life_satisfaction = lin1.predict([[cyprus_gdp_per_capita]])[0][0]\n", "cyprus_predicted_life_satisfaction" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(5,3), s=1)\n", "plt.xlabel(\"GDP per capita (USD)\")\n", "X=np.linspace(0, 60000, 1000)\n", "plt.plot(X, t0 + t1*X, \"b\")\n", "plt.axis([0, 60000, 0, 10])\n", "plt.text(5000, 7.5, r\"$\\theta_0 = 4.85$\", fontsize=14, color=\"b\")\n", "plt.text(5000, 6.6, r\"$\\theta_1 = 4.91 \\times 10^{-5}$\", fontsize=14, color=\"b\")\n", "plt.plot([cyprus_gdp_per_capita, cyprus_gdp_per_capita], [0, cyprus_predicted_life_satisfaction], \"r--\")\n", "plt.text(25000, 5.0, r\"Prediction = 5.96\", fontsize=14, color=\"b\")\n", "plt.plot(cyprus_gdp_per_capita, cyprus_predicted_life_satisfaction, \"ro\")\n", "save_fig('cyprus_prediction_plot')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "sample_data[7:10]" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "(5.1+5.7+6.5)/3" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "backup = oecd_bli, gdp_per_capita\n", "\n", "def prepare_country_stats(oecd_bli, gdp_per_capita):\n", " oecd_bli = oecd_bli[oecd_bli[\"INEQUALITY\"]==\"TOT\"]\n", " oecd_bli = oecd_bli.pivot(index=\"Country\", columns=\"Indicator\", values=\"Value\")\n", " gdp_per_capita.rename(columns={\"2015\": \"GDP per capita\"}, inplace=True)\n", " gdp_per_capita.set_index(\"Country\", inplace=True)\n", " full_country_stats = pd.merge(left=oecd_bli, right=gdp_per_capita,\n", " left_index=True, right_index=True)\n", " full_country_stats.sort_values(by=\"GDP per capita\", inplace=True)\n", " remove_indices = [0, 1, 6, 8, 33, 34, 35]\n", " keep_indices = list(set(range(36)) - set(remove_indices))\n", " return full_country_stats[[\"GDP per capita\", 'Life satisfaction']].iloc[keep_indices]" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "# Code example\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import sklearn.linear_model\n", "\n", "# Load the data\n", "oecd_bli = pd.read_csv(datapath + \"oecd_bli_2015.csv\", thousands=',')\n", "gdp_per_capita = pd.read_csv(datapath + \"gdp_per_capita.csv\",thousands=',',delimiter='\\t',\n", " encoding='latin1', na_values=\"n/a\")\n", "\n", "# Prepare the data\n", "country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)\n", "X = np.c_[country_stats[\"GDP per capita\"]]\n", "y = np.c_[country_stats[\"Life satisfaction\"]]\n", "\n", "# Visualize the data\n", "country_stats.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction')\n", "plt.show()\n", "\n", "# Select a linear model\n", "model = sklearn.linear_model.LinearRegression()\n", "\n", "# Train the model\n", "model.fit(X, y)\n", "\n", "# Make a prediction for Cyprus\n", "X_new = [[22587]] # Cyprus' GDP per capita\n", "print(model.predict(X_new)) # outputs [[ 5.96242338]]" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "oecd_bli, gdp_per_capita = backup" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "missing_data" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "position_text2 = {\n", " \"Brazil\": (1000, 9.0),\n", " \"Mexico\": (11000, 9.0),\n", " \"Chile\": (25000, 9.0),\n", " \"Czech Republic\": (35000, 9.0),\n", " \"Norway\": (60000, 3),\n", " \"Switzerland\": (72000, 3.0),\n", " \"Luxembourg\": (90000, 3.0),\n", "}" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(8,3))\n", "plt.axis([0, 110000, 0, 10])\n", "\n", "for country, pos_text in position_text2.items():\n", " pos_data_x, pos_data_y = missing_data.loc[country]\n", " plt.annotate(country, xy=(pos_data_x, pos_data_y), xytext=pos_text,\n", " arrowprops=dict(facecolor='black', width=0.5, shrink=0.1, headwidth=5))\n", " plt.plot(pos_data_x, pos_data_y, \"rs\")\n", "\n", "X=np.linspace(0, 110000, 1000)\n", "plt.plot(X, t0 + t1*X, \"b:\")\n", "\n", "lin_reg_full = linear_model.LinearRegression()\n", "Xfull = np.c_[full_country_stats[\"GDP per capita\"]]\n", "yfull = np.c_[full_country_stats[\"Life satisfaction\"]]\n", "lin_reg_full.fit(Xfull, yfull)\n", "\n", "t0full, t1full = lin_reg_full.intercept_[0], lin_reg_full.coef_[0][0]\n", "X = np.linspace(0, 110000, 1000)\n", "plt.plot(X, t0full + t1full * X, \"k\")\n", "plt.xlabel(\"GDP per capita (USD)\")\n", "\n", "save_fig('representative_training_data_scatterplot')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "full_country_stats.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(8,3))\n", "plt.axis([0, 110000, 0, 10])\n", "\n", "from sklearn import preprocessing\n", "from sklearn import pipeline\n", "\n", "poly = preprocessing.PolynomialFeatures(degree=60, include_bias=False)\n", "scaler = preprocessing.StandardScaler()\n", "lin_reg2 = linear_model.LinearRegression()\n", "\n", "pipeline_reg = pipeline.Pipeline([('poly', poly), ('scal', scaler), ('lin', lin_reg2)])\n", "pipeline_reg.fit(Xfull, yfull)\n", "curve = pipeline_reg.predict(X[:, np.newaxis])\n", "plt.plot(X, curve)\n", "plt.xlabel(\"GDP per capita (USD)\")\n", "save_fig('overfitting_model_plot')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "full_country_stats.loc[[c for c in full_country_stats.index if \"W\" in c.upper()]][\"Life satisfaction\"]" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "gdp_per_capita.loc[[c for c in gdp_per_capita.index if \"W\" in c.upper()]].head()" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "plt.figure(figsize=(8,3))\n", "\n", "plt.xlabel(\"GDP per capita\")\n", "plt.ylabel('Life satisfaction')\n", "\n", "plt.plot(list(sample_data[\"GDP per capita\"]), list(sample_data[\"Life satisfaction\"]), \"bo\")\n", "plt.plot(list(missing_data[\"GDP per capita\"]), list(missing_data[\"Life satisfaction\"]), \"rs\")\n", "\n", "X = np.linspace(0, 110000, 1000)\n", "plt.plot(X, t0full + t1full * X, \"r--\", label=\"Linear model on all data\")\n", "plt.plot(X, t0 + t1*X, \"b:\", label=\"Linear model on partial data\")\n", "\n", "ridge = linear_model.Ridge(alpha=10**9.5)\n", "Xsample = np.c_[sample_data[\"GDP per capita\"]]\n", "ysample = np.c_[sample_data[\"Life satisfaction\"]]\n", "ridge.fit(Xsample, ysample)\n", "t0ridge, t1ridge = ridge.intercept_[0], ridge.coef_[0][0]\n", "plt.plot(X, t0ridge + t1ridge * X, \"b\", label=\"Regularized linear model on partial data\")\n", "\n", "plt.legend(loc=\"lower right\")\n", "plt.axis([0, 110000, 0, 10])\n", "plt.xlabel(\"GDP per capita (USD)\")\n", "save_fig('ridge_model_plot')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "backup = oecd_bli, gdp_per_capita\n", "\n", "def prepare_country_stats(oecd_bli, gdp_per_capita):\n", " return sample_data" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "# Replace this linear model:\n", "import sklearn.linear_model\n", "model = sklearn.linear_model.LinearRegression()" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "# with this k-neighbors regression model:\n", "import sklearn.neighbors\n", "model = sklearn.neighbors.KNeighborsRegressor(n_neighbors=3)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "X = np.c_[country_stats[\"GDP per capita\"]]\n", "y = np.c_[country_stats[\"Life satisfaction\"]]\n", "\n", "# Train the model\n", "model.fit(X, y)\n", "\n", "# Make a prediction for Cyprus\n", "X_new = np.array([[22587.0]]) # Cyprus' GDP per capita\n", "print(model.predict(X_new)) # outputs [[ 5.76666667]]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" }, "nav_menu": {}, "toc": { "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 6, "toc_cell": false, "toc_section_display": "block", "toc_window_display": true }, "toc_position": { "height": "616px", "left": "0px", "right": "20px", "top": "106px", "width": "213px" } }, "nbformat": 4, "nbformat_minor": 1 }