{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "**Chapter 17 – Autoencoders and GANs**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "_This notebook contains all the sample code in chapter 17._" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Setup" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0-preview." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Python ≥3.5 is required\n", "import sys\n", "assert sys.version_info >= (3, 5)\n", "\n", "# Scikit-Learn ≥0.20 is required\n", "import sklearn\n", "assert sklearn.__version__ >= \"0.20\"\n", "\n", "# TensorFlow ≥2.0-preview is required\n", "import tensorflow as tf\n", "from tensorflow import keras\n", "assert tf.__version__ >= \"2.0\"\n", "\n", "# Common imports\n", "import numpy as np\n", "import os\n", "\n", "# to make this notebook's output stable across runs\n", "np.random.seed(42)\n", "tf.random.set_seed(42)\n", "\n", "# To plot pretty figures\n", "%matplotlib inline\n", "import matplotlib as mpl\n", "import matplotlib.pyplot as plt\n", "mpl.rc('axes', labelsize=14)\n", "mpl.rc('xtick', labelsize=12)\n", "mpl.rc('ytick', labelsize=12)\n", "\n", "# Where to save the figures\n", "PROJECT_ROOT_DIR = \".\"\n", "CHAPTER_ID = \"autoencoders\"\n", "IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID)\n", "os.makedirs(IMAGES_PATH, exist_ok=True)\n", "\n", "def save_fig(fig_id, tight_layout=True, fig_extension=\"png\", resolution=300):\n", " path = os.path.join(IMAGES_PATH, fig_id + \".\" + fig_extension)\n", " print(\"Saving figure\", fig_id)\n", " if tight_layout:\n", " plt.tight_layout()\n", " plt.savefig(path, format=fig_extension, dpi=resolution)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A couple utility functions to plot grayscale 28x28 image:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def plot_image(image):\n", " plt.imshow(image, cmap=\"binary\")\n", " plt.axis(\"off\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# PCA with a linear Autoencoder" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Build 3D dataset:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "np.random.seed(4)\n", "\n", "def generate_3d_data(m, w1=0.1, w2=0.3, noise=0.1):\n", " angles = np.random.rand(m) * 3 * np.pi / 2 - 0.5\n", " data = np.empty((m, 3))\n", " data[:, 0] = np.cos(angles) + np.sin(angles)/2 + noise * np.random.randn(m) / 2\n", " data[:, 1] = np.sin(angles) * 0.7 + noise * np.random.randn(m) / 2\n", " data[:, 2] = data[:, 0] * w1 + data[:, 1] * w2 + noise * np.random.randn(m)\n", " return data\n", "\n", "X_train = generate_3d_data(60)\n", "X_train = X_train - X_train.mean(axis=0, keepdims=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's build the Autoencoder..." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "np.random.seed(42)\n", "tf.random.set_seed(42)\n", "\n", "encoder = keras.models.Sequential([keras.layers.Dense(2, input_shape=[3])])\n", "decoder = keras.models.Sequential([keras.layers.Dense(3, input_shape=[2])])\n", "autoencoder = keras.models.Sequential([encoder, decoder])\n", "\n", "autoencoder.compile(loss=\"mse\", optimizer=keras.optimizers.SGD(lr=1.5))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "history = autoencoder.fit(X_train, X_train, epochs=20)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "codings = encoder.predict(X_train)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(4,3))\n", "plt.plot(codings[:,0], codings[:, 1], \"b.\")\n", "plt.xlabel(\"$z_1$\", fontsize=18)\n", "plt.ylabel(\"$z_2$\", fontsize=18, rotation=0)\n", "plt.grid(True)\n", "save_fig(\"linear_autoencoder_pca_plot\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Stacked Autoencoders" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's use MNIST:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "(X_train_full, y_train_full), (X_test, y_test) = keras.datasets.fashion_mnist.load_data()\n", "X_train_full = X_train_full.astype(np.float32) / 255\n", "X_test = X_test.astype(np.float32) / 255\n", "X_train, X_valid = X_train_full[:-5000], X_train_full[-5000:]\n", "y_train, y_valid = y_train_full[:-5000], y_train_full[-5000:]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Train all layers at once" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's build a stacked Autoencoder with 3 hidden layers and 1 output layer (i.e., 2 stacked Autoencoders)." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def rounded_accuracy(y_true, y_pred):\n", " return keras.metrics.binary_accuracy(tf.round(y_true), tf.round(y_pred))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "stacked_encoder = keras.models.Sequential([\n", " keras.layers.Flatten(input_shape=[28, 28]),\n", " keras.layers.Dense(100, activation=\"selu\"),\n", " keras.layers.Dense(30, activation=\"selu\"),\n", "])\n", "stacked_decoder = keras.models.Sequential([\n", " keras.layers.Dense(100, activation=\"selu\", input_shape=[30]),\n", " keras.layers.Dense(28 * 28, activation=\"sigmoid\"),\n", " keras.layers.Reshape([28, 28])\n", "])\n", "stacked_ae = keras.models.Sequential([stacked_encoder, stacked_decoder])\n", "stacked_ae.compile(loss=\"binary_crossentropy\",\n", " optimizer=keras.optimizers.SGD(lr=1.5), metrics=[rounded_accuracy])\n", "history = stacked_ae.fit(X_train, X_train, epochs=20,\n", " validation_data=[X_valid, X_valid])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This function processes a few test images through the autoencoder and displays the original images and their reconstructions:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "def show_reconstructions(model, images=X_valid, n_images=5):\n", " reconstructions = model.predict(images[:n_images])\n", " fig = plt.figure(figsize=(n_images * 1.5, 3))\n", " for image_index in range(n_images):\n", " plt.subplot(2, n_images, 1 + image_index)\n", " plot_image(images[image_index])\n", " plt.subplot(2, n_images, 1 + n_images + image_index)\n", " plot_image(reconstructions[image_index])" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "show_reconstructions(stacked_ae)\n", "save_fig(\"reconstruction_plot\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Visualizing Fashion MNIST" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "np.random.seed(42)\n", "\n", "from sklearn.manifold import TSNE\n", "\n", "X_valid_compressed = stacked_encoder.predict(X_valid)\n", "tsne = TSNE()\n", "X_valid_2D = tsne.fit_transform(X_valid_compressed)\n", "X_valid_2D = (X_valid_2D - X_valid_2D.min()) / (X_valid_2D.max() - X_valid_2D.min())" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "plt.scatter(X_valid_2D[:, 0], X_valid_2D[:, 1], c=y_valid, s=10, cmap=\"tab10\")\n", "plt.axis(\"off\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's make this diagram a bit prettier:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "# adapted from https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html\n", "plt.figure(figsize=(10, 8))\n", "cmap = plt.cm.tab10\n", "plt.scatter(X_valid_2D[:, 0], X_valid_2D[:, 1], c=y_valid, s=10, cmap=cmap)\n", "image_positions = np.array([[1., 1.]])\n", "for index, position in enumerate(X_valid_2D):\n", " dist = np.sum((position - image_positions) ** 2, axis=1)\n", " if np.min(dist) > 0.02: # if far enough from other images\n", " image_positions = np.r_[image_positions, [position]]\n", " imagebox = mpl.offsetbox.AnnotationBbox(\n", " mpl.offsetbox.OffsetImage(X_valid[index], cmap=\"binary\"),\n", " position, bboxprops={\"edgecolor\": cmap(y_valid[index]), \"lw\": 2})\n", " plt.gca().add_artist(imagebox)\n", "plt.axis(\"off\")\n", "save_fig(\"fashion_mnist_visualization_plot\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tying weights" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is common to tie the weights of the encoder and the decoder, by simply using the transpose of the encoder's weights as the decoder weights. For this, we need to use a custom layer." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "K = keras.backend\n", "\n", "class DenseTranspose(keras.layers.Layer):\n", " def __init__(self, dense, activation=None, **kwargs):\n", " self.dense = dense\n", " self.activation = keras.activations.get(activation)\n", " super().__init__(**kwargs)\n", " def build(self, batch_input_shape):\n", " self.biases = self.add_weight(name=\"bias\",\n", " shape=[self.dense.input_shape[-1]],\n", " initializer=\"zeros\")\n", " super().build(batch_input_shape)\n", " def call(self, inputs):\n", " z = inputs @ K.transpose(self.dense.weights[0]) + self.biases\n", " return self.activation(z)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "tied_encoder = keras.models.Sequential([\n", " keras.layers.Flatten(input_shape=[28, 28]),\n", " keras.layers.Dense(100, activation=\"selu\"),\n", " keras.layers.Dense(30, activation=\"selu\"),\n", "])\n", "tied_decoder = keras.models.Sequential([\n", " DenseTranspose(tied_encoder.layers[2], activation=\"selu\"),\n", " DenseTranspose(tied_encoder.layers[1], activation=\"sigmoid\"),\n", " keras.layers.Reshape([28, 28])\n", "])\n", "tied_ae = keras.models.Sequential([tied_encoder, tied_decoder])\n", "tied_ae.compile(loss=\"binary_crossentropy\",\n", " optimizer=keras.optimizers.SGD(lr=1.5), metrics=[rounded_accuracy])\n", "history = tied_ae.fit(X_train, X_train, epochs=10,\n", " validation_data=[X_valid, X_valid])" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "scrolled": true }, "outputs": [], "source": [ "show_reconstructions(tied_ae)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Training one Autoencoder at a time" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "def train_autoencoder(n_neurons, X_train, X_valid, loss, optimizer,\n", " n_epochs=10, output_activation=None, metrics=None):\n", " n_inputs = X_train.shape[-1]\n", " encoder = keras.models.Sequential([\n", " keras.layers.Dense(n_neurons, activation=\"selu\", input_shape=[n_inputs])\n", " ])\n", " decoder = keras.models.Sequential([\n", " keras.layers.Dense(n_inputs, activation=output_activation),\n", " ])\n", " autoencoder = keras.models.Sequential([encoder, decoder])\n", " autoencoder.compile(optimizer, loss, metrics=metrics)\n", " autoencoder.fit(X_train, X_train, epochs=n_epochs,\n", " validation_data=[X_valid, X_valid])\n", " return encoder, decoder, encoder(X_train), encoder(X_valid)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "X_train_flat = K.batch_flatten(X_train) # equivalent to .reshape(-1, 28 * 28)\n", "X_valid_flat = K.batch_flatten(X_valid)\n", "enc1, dec1, X_train_enc1, X_valid_enc1 = train_autoencoder(\n", " 100, X_train_flat, X_valid_flat, \"binary_crossentropy\",\n", " keras.optimizers.SGD(lr=1.5), output_activation=\"sigmoid\",\n", " metrics=[rounded_accuracy])\n", "enc2, dec2, _, _ = train_autoencoder(\n", " 30, X_train_enc1, X_valid_enc1, \"mse\", keras.optimizers.SGD(lr=0.05),\n", " output_activation=\"selu\")" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "stacked_ae_1_by_1 = keras.models.Sequential([\n", " keras.layers.Flatten(input_shape=[28, 28]),\n", " enc1, enc2, dec2, dec1,\n", " keras.layers.Reshape([28, 28])\n", "])" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "show_reconstructions(stacked_ae_1_by_1)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "stacked_ae_1_by_1.compile(loss=\"binary_crossentropy\",\n", " optimizer=keras.optimizers.SGD(lr=0.1), metrics=[rounded_accuracy])\n", "history = stacked_ae_1_by_1.fit(X_train, X_train, epochs=10,\n", " validation_data=[X_valid, X_valid])" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "show_reconstructions(stacked_ae_1_by_1)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Using Convolutional Layers Instead of Dense Layers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's build a stacked Autoencoder with 3 hidden layers and 1 output layer (i.e., 2 stacked Autoencoders)." ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "conv_encoder = keras.models.Sequential([\n", " keras.layers.Reshape([28, 28, 1], input_shape=[28, 28]),\n", " keras.layers.Conv2D(16, kernel_size=3, padding=\"SAME\", activation=\"selu\"),\n", " keras.layers.MaxPool2D(pool_size=2),\n", " keras.layers.Conv2D(32, kernel_size=3, padding=\"SAME\", activation=\"selu\"),\n", " keras.layers.MaxPool2D(pool_size=2),\n", " keras.layers.Conv2D(64, kernel_size=3, padding=\"SAME\", activation=\"selu\"),\n", " keras.layers.MaxPool2D(pool_size=2)\n", "])\n", "conv_decoder = keras.models.Sequential([\n", " keras.layers.Conv2DTranspose(32, kernel_size=3, strides=2, padding=\"VALID\", activation=\"selu\",\n", " input_shape=[3, 3, 64]),\n", " keras.layers.Conv2DTranspose(16, kernel_size=3, strides=2, padding=\"SAME\", activation=\"selu\"),\n", " keras.layers.Conv2DTranspose(1, kernel_size=3, strides=2, padding=\"SAME\", activation=\"sigmoid\"),\n", " keras.layers.Reshape([28, 28])\n", "])\n", "conv_ae = keras.models.Sequential([conv_encoder, conv_decoder])\n", "\n", "conv_ae.compile(loss=\"binary_crossentropy\", optimizer=keras.optimizers.SGD(lr=1.0),\n", " metrics=[rounded_accuracy])\n", "history = conv_ae.fit(X_train, X_train, epochs=5,\n", " validation_data=[X_valid, X_valid])" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "conv_encoder.summary()\n", "conv_decoder.summary()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "show_reconstructions(conv_ae)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Recurrent Autoencoders" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "recurrent_encoder = keras.models.Sequential([\n", " keras.layers.LSTM(100, return_sequences=True, input_shape=[28, 28]),\n", " keras.layers.LSTM(30)\n", "])\n", "recurrent_decoder = keras.models.Sequential([\n", " keras.layers.RepeatVector(28, input_shape=[30]),\n", " keras.layers.LSTM(100, return_sequences=True),\n", " keras.layers.TimeDistributed(keras.layers.Dense(28, activation=\"sigmoid\"))\n", "])\n", "recurrent_ae = keras.models.Sequential([recurrent_encoder, recurrent_decoder])\n", "recurrent_ae.compile(loss=\"binary_crossentropy\", optimizer=keras.optimizers.SGD(0.1),\n", " metrics=[rounded_accuracy])" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "history = recurrent_ae.fit(X_train, X_train, epochs=10, validation_data=[X_valid, X_valid])" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "show_reconstructions(recurrent_ae)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Stacked denoising Autoencoder" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using Gaussian noise:" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "denoising_encoder = keras.models.Sequential([\n", " keras.layers.Flatten(input_shape=[28, 28]),\n", " keras.layers.GaussianNoise(0.2),\n", " keras.layers.Dense(100, activation=\"selu\"),\n", " keras.layers.Dense(30, activation=\"selu\")\n", "])\n", "denoising_decoder = keras.models.Sequential([\n", " keras.layers.Dense(100, activation=\"selu\", input_shape=[30]),\n", " keras.layers.Dense(28 * 28, activation=\"sigmoid\"),\n", " keras.layers.Reshape([28, 28])\n", "])\n", "denoising_ae = keras.models.Sequential([denoising_encoder, denoising_decoder])\n", "denoising_ae.compile(loss=\"binary_crossentropy\", optimizer=keras.optimizers.SGD(lr=1.0),\n", " metrics=[rounded_accuracy])\n", "history = denoising_ae.fit(X_train, X_train, epochs=10,\n", " validation_data=[X_valid, X_valid])" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "noise = keras.layers.GaussianNoise(0.2)\n", "show_reconstructions(denoising_ae, noise(X_valid, training=True))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using dropout:" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "dropout_encoder = keras.models.Sequential([\n", " keras.layers.Flatten(input_shape=[28, 28]),\n", " keras.layers.Dropout(0.5),\n", " keras.layers.Dense(100, activation=\"selu\"),\n", " keras.layers.Dense(30, activation=\"selu\")\n", "])\n", "dropout_decoder = keras.models.Sequential([\n", " keras.layers.Dense(100, activation=\"selu\", input_shape=[30]),\n", " keras.layers.Dense(28 * 28, activation=\"sigmoid\"),\n", " keras.layers.Reshape([28, 28])\n", "])\n", "dropout_ae = keras.models.Sequential([dropout_encoder, dropout_decoder])\n", "dropout_ae.compile(loss=\"binary_crossentropy\", optimizer=keras.optimizers.SGD(lr=1.0),\n", " metrics=[rounded_accuracy])\n", "history = dropout_ae.fit(X_train, X_train, epochs=10,\n", " validation_data=[X_valid, X_valid])" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "dropout = keras.layers.Dropout(0.5)\n", "show_reconstructions(dropout_ae, dropout(X_valid, training=True))\n", "save_fig(\"dropout_denoising_plot\", tight_layout=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Sparse Autoencoder" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's build a simple stacked autoencoder, so we can compare it to the sparse autoencoders we will build. This time we will use the sigmoid activation function for the coding layer, to ensure that the coding values range from 0 to 1:" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "simple_encoder = keras.models.Sequential([\n", " keras.layers.Flatten(input_shape=[28, 28]),\n", " keras.layers.Dense(100, activation=\"selu\"),\n", " keras.layers.Dense(30, activation=\"sigmoid\"),\n", "])\n", "simple_decoder = keras.models.Sequential([\n", " keras.layers.Dense(100, activation=\"selu\", input_shape=[30]),\n", " keras.layers.Dense(28 * 28, activation=\"sigmoid\"),\n", " keras.layers.Reshape([28, 28])\n", "])\n", "simple_ae = keras.models.Sequential([simple_encoder, simple_decoder])\n", "simple_ae.compile(loss=\"binary_crossentropy\", optimizer=keras.optimizers.SGD(lr=1.),\n", " metrics=[rounded_accuracy])\n", "history = simple_ae.fit(X_train, X_train, epochs=10,\n", " validation_data=[X_valid, X_valid])" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "show_reconstructions(simple_ae)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's create a couple functions to print nice activation histograms:" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "def plot_percent_hist(ax, data, bins):\n", " counts, _ = np.histogram(data, bins=bins)\n", " widths = bins[1:] - bins[:-1]\n", " x = bins[:-1] + widths / 2\n", " ax.bar(x, counts / len(data), width=widths*0.8)\n", " ax.xaxis.set_ticks(bins)\n", " ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(\n", " lambda y, position: \"{}%\".format(int(np.round(100 * y)))))\n", " ax.grid(True)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "def plot_activations_histogram(encoder, height=1, n_bins=10):\n", " X_valid_codings = encoder(X_valid).numpy()\n", " activation_means = X_valid_codings.mean(axis=0)\n", " mean = activation_means.mean()\n", " bins = np.linspace(0, 1, n_bins + 1)\n", "\n", " fig, [ax1, ax2] = plt.subplots(figsize=(10, 3), nrows=1, ncols=2, sharey=True)\n", " plot_percent_hist(ax1, X_valid_codings.ravel(), bins)\n", " ax1.plot([mean, mean], [0, height], \"k--\", label=\"Overall Mean = {:.2f}\".format(mean))\n", " ax1.legend(loc=\"upper center\", fontsize=14)\n", " ax1.set_xlabel(\"Activation\")\n", " ax1.set_ylabel(\"% Activations\")\n", " ax1.axis([0, 1, 0, height])\n", " plot_percent_hist(ax2, activation_means, bins)\n", " ax2.plot([mean, mean], [0, height], \"k--\")\n", " ax2.set_xlabel(\"Neuron Mean Activation\")\n", " ax2.set_ylabel(\"% Neurons\")\n", " ax2.axis([0, 1, 0, height])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's use these functions to plot histograms of the activations of the encoding layer. The histogram on the left shows the distribution of all the activations. You can see that values close to 0 or 1 are more frequent overall, which is consistent with the saturating nature of the sigmoid function. The histogram on the right shows the distribution of mean neuron activations: you can see that most neurons have a mean activation close to 0.5. Both histograms tell us that each neuron tends to either fire close to 0 or 1, with about 50% probability each. However, some neurons fire almost all the time (right side of the right histogram)." ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "plot_activations_histogram(simple_encoder, height=0.35)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's add $\\ell_1$ regularization to the coding layer:" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "sparse_l1_encoder = keras.models.Sequential([\n", " keras.layers.Flatten(input_shape=[28, 28]),\n", " keras.layers.Dense(100, activation=\"selu\"),\n", " keras.layers.Dense(300, activation=\"sigmoid\"),\n", " keras.layers.ActivityRegularization(l1=1e-3) # Alternatively, you could add\n", " # activity_regularizer=keras.regularizers.l1(1e-3)\n", " # to the previous layer.\n", "])\n", "sparse_l1_decoder = keras.models.Sequential([\n", " keras.layers.Dense(100, activation=\"selu\", input_shape=[300]),\n", " keras.layers.Dense(28 * 28, activation=\"sigmoid\"),\n", " keras.layers.Reshape([28, 28])\n", "])\n", "sparse_l1_ae = keras.models.Sequential([sparse_l1_encoder, sparse_l1_decoder])\n", "sparse_l1_ae.compile(loss=\"binary_crossentropy\", optimizer=keras.optimizers.SGD(lr=1.0),\n", " metrics=[rounded_accuracy])\n", "history = sparse_l1_ae.fit(X_train, X_train, epochs=10,\n", " validation_data=[X_valid, X_valid])" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "show_reconstructions(sparse_l1_ae)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "plot_activations_histogram(sparse_l1_encoder, height=1.)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's use the KL Divergence loss instead to ensure sparsity, and target 10% sparsity rather than 0%:" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "p = 0.1\n", "q = np.linspace(0.001, 0.999, 500)\n", "kl_div = p * np.log(p / q) + (1 - p) * np.log((1 - p) / (1 - q))\n", "mse = (p - q)**2\n", "mae = np.abs(p - q)\n", "plt.plot([p, p], [0, 0.3], \"k:\")\n", "plt.text(0.05, 0.32, \"Target\\nsparsity\", fontsize=14)\n", "plt.plot(q, kl_div, \"b-\", label=\"KL divergence\")\n", "plt.plot(q, mae, \"g--\", label=r\"MAE ($\\ell_1$)\")\n", "plt.plot(q, mse, \"r--\", linewidth=1, label=r\"MSE ($\\ell_2$)\")\n", "plt.legend(loc=\"upper left\", fontsize=14)\n", "plt.xlabel(\"Actual sparsity\")\n", "plt.ylabel(\"Cost\", rotation=0)\n", "plt.axis([0, 1, 0, 0.95])\n", "save_fig(\"sparsity_loss_plot\")" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "K = keras.backend\n", "kl_divergence = keras.losses.kullback_leibler_divergence\n", "\n", "class KLDivergenceRegularizer(keras.regularizers.Regularizer):\n", " def __init__(self, weight, target=0.1):\n", " self.weight = weight\n", " self.target = target\n", " def __call__(self, inputs):\n", " mean_activities = K.mean(inputs, axis=0)\n", " return self.weight * (\n", " kl_divergence(self.target, mean_activities) +\n", " kl_divergence(1. - self.target, 1. - mean_activities))" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "kld_reg = KLDivergenceRegularizer(weight=0.05, target=0.1)\n", "sparse_kl_encoder = keras.models.Sequential([\n", " keras.layers.Flatten(input_shape=[28, 28]),\n", " keras.layers.Dense(100, activation=\"selu\"),\n", " keras.layers.Dense(300, activation=\"sigmoid\", activity_regularizer=kld_reg)\n", "])\n", "sparse_kl_decoder = keras.models.Sequential([\n", " keras.layers.Dense(100, activation=\"selu\", input_shape=[300]),\n", " keras.layers.Dense(28 * 28, activation=\"sigmoid\"),\n", " keras.layers.Reshape([28, 28])\n", "])\n", "sparse_kl_ae = keras.models.Sequential([sparse_kl_encoder, sparse_kl_decoder])\n", "sparse_kl_ae.compile(loss=\"binary_crossentropy\", optimizer=keras.optimizers.SGD(lr=1.0),\n", " metrics=[rounded_accuracy])\n", "history = sparse_kl_ae.fit(X_train, X_train, epochs=10,\n", " validation_data=[X_valid, X_valid])" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "show_reconstructions(sparse_kl_ae)" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [], "source": [ "plot_activations_histogram(sparse_kl_encoder)\n", "save_fig(\"sparse_autoencoder_plot\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Variational Autoencoder" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "class Sampling(keras.layers.Layer):\n", " def call(self, inputs):\n", " mean, log_var = inputs\n", " return K.random_normal(tf.shape(log_var)) * K.exp(log_var / 2) + mean " ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "codings_size = 10\n", "\n", "inputs = keras.layers.Input(shape=[28, 28])\n", "z = keras.layers.Flatten()(inputs)\n", "z = keras.layers.Dense(150, activation=\"selu\")(z)\n", "z = keras.layers.Dense(100, activation=\"selu\")(z)\n", "codings_mean = keras.layers.Dense(codings_size)(z)\n", "codings_log_var = keras.layers.Dense(codings_size)(z)\n", "codings = Sampling()([codings_mean, codings_log_var])\n", "variational_encoder = keras.models.Model(\n", " inputs=[inputs], outputs=[codings_mean, codings_log_var, codings])\n", "\n", "decoder_inputs = keras.layers.Input(shape=[codings_size])\n", "x = keras.layers.Dense(100, activation=\"selu\")(decoder_inputs)\n", "x = keras.layers.Dense(150, activation=\"selu\")(x)\n", "x = keras.layers.Dense(28 * 28, activation=\"sigmoid\")(x)\n", "outputs = keras.layers.Reshape([28, 28])(x)\n", "variational_decoder = keras.models.Model(inputs=[decoder_inputs], outputs=[outputs])\n", "\n", "_, _, codings = variational_encoder(inputs)\n", "reconstructions = variational_decoder(codings)\n", "variational_ae = keras.models.Model(inputs=[inputs], outputs=[reconstructions])\n", "\n", "latent_loss = -0.5 * K.sum(\n", " 1 + codings_log_var - K.exp(codings_log_var) - K.square(codings_mean),\n", " axis=-1)\n", "variational_ae.add_loss(K.mean(latent_loss) / 784.)\n", "variational_ae.compile(loss=\"binary_crossentropy\", optimizer=\"rmsprop\", metrics=[rounded_accuracy])\n", "history = variational_ae.fit(X_train, X_train, epochs=25, batch_size=128,\n", " validation_data=[X_valid, X_valid])" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "scrolled": true }, "outputs": [], "source": [ "show_reconstructions(variational_ae)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Generate Fashion Images" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [], "source": [ "def plot_multiple_images(images, n_cols=None):\n", " n_cols = n_cols or len(images)\n", " n_rows = (len(images) - 1) // n_cols + 1\n", " if images.shape[-1] == 1:\n", " images = np.squeeze(images, axis=-1)\n", " plt.figure(figsize=(n_cols, n_rows))\n", " for index, image in enumerate(images):\n", " plt.subplot(n_rows, n_cols, index + 1)\n", " plt.imshow(image, cmap=\"binary\")\n", " plt.axis(\"off\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's generate a few random codings, decode them and plot the resulting images:" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "\n", "codings = tf.random.normal(shape=[12, codings_size])\n", "images = variational_decoder(codings).numpy()\n", "plot_multiple_images(images, 4)\n", "save_fig(\"vae_generated_images_plot\", tight_layout=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's perform semantic interpolation between these images:" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "codings_grid = tf.reshape(codings, [1, 3, 4, codings_size])\n", "larger_grid = tf.image.resize(codings_grid, size=[5, 7])\n", "interpolated_codings = tf.reshape(larger_grid, [-1, codings_size])\n", "images = variational_decoder(interpolated_codings).numpy()\n", "\n", "plt.figure(figsize=(7, 5))\n", "for index, image in enumerate(images):\n", " plt.subplot(5, 7, index + 1)\n", " if index%7%2==0 and index//7%2==0:\n", " plt.gca().get_xaxis().set_visible(False)\n", " plt.gca().get_yaxis().set_visible(False)\n", " else:\n", " plt.axis(\"off\")\n", " plt.imshow(image, cmap=\"binary\")\n", "save_fig(\"semantic_interpolation_plot\", tight_layout=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Generative Adversarial Networks" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [], "source": [ "np.random.seed(42)\n", "tf.random.set_seed(42)\n", "\n", "codings_size = 30\n", "\n", "generator = keras.models.Sequential([\n", " keras.layers.Dense(100, activation=\"selu\", input_shape=[codings_size]),\n", " keras.layers.Dense(150, activation=\"selu\"),\n", " keras.layers.Dense(28 * 28, activation=\"sigmoid\"),\n", " keras.layers.Reshape([28, 28])\n", "])\n", "discriminator = keras.models.Sequential([\n", " keras.layers.Flatten(input_shape=[28, 28]),\n", " keras.layers.Dense(150, activation=\"selu\"),\n", " keras.layers.Dense(100, activation=\"selu\"),\n", " keras.layers.Dense(1, activation=\"sigmoid\")\n", "])\n", "gan = keras.models.Sequential([generator, discriminator])" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "discriminator.compile(loss=\"binary_crossentropy\", optimizer=\"rmsprop\")\n", "discriminator.trainable = False\n", "gan.compile(loss=\"binary_crossentropy\", optimizer=\"rmsprop\")" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [], "source": [ "batch_size = 32\n", "dataset = tf.data.Dataset.from_tensor_slices(X_train).shuffle(1000)\n", "dataset = dataset.batch(batch_size, drop_remainder=True).prefetch(1)" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [], "source": [ "def train_gan(gan, dataset, batch_size, codings_size, n_epochs=50):\n", " generator, discriminator = gan.layers\n", " for epoch in range(n_epochs):\n", " print(\"Epoch {}/{}\".format(epoch + 1, n_epochs)) # not shown in the book\n", " for X_batch in dataset:\n", " # phase 1 - training the discriminator\n", " noise = tf.random.normal(shape=[batch_size, codings_size])\n", " generated_images = generator(noise)\n", " X_fake_and_real = tf.concat([generated_images, X_batch], axis=0)\n", " y1 = tf.constant([[0.]] * batch_size + [[1.]] * batch_size)\n", " discriminator.trainable = True\n", " discriminator.train_on_batch(X_fake_and_real, y1)\n", " # phase 2 - training the generator\n", " noise = tf.random.normal(shape=[batch_size, codings_size])\n", " y2 = tf.constant([[1.]] * batch_size)\n", " discriminator.trainable = False\n", " gan.train_on_batch(noise, y2)\n", " plot_multiple_images(generated_images, 8) # not shown\n", " plt.show() # not shown" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [], "source": [ "train_gan(gan, dataset, batch_size, codings_size, n_epochs=1)" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "noise = tf.random.normal(shape=[batch_size, codings_size])\n", "generated_images = generator(noise)\n", "plot_multiple_images(generated_images, 8)\n", "save_fig(\"gan_generated_images_plot\", tight_layout=False)" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [], "source": [ "train_gan(gan, dataset, batch_size, codings_size)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Deep Convolutional GAN" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "codings_size = 100\n", "\n", "generator = keras.models.Sequential([\n", " keras.layers.Dense(7 * 7 * 128, input_shape=[codings_size]),\n", " keras.layers.Reshape([7, 7, 128]),\n", " keras.layers.BatchNormalization(),\n", " keras.layers.Conv2DTranspose(64, kernel_size=5, strides=2, padding=\"SAME\",\n", " activation=\"selu\"),\n", " keras.layers.BatchNormalization(),\n", " keras.layers.Conv2DTranspose(1, kernel_size=5, strides=2, padding=\"SAME\",\n", " activation=\"tanh\"),\n", "])\n", "discriminator = keras.models.Sequential([\n", " keras.layers.Conv2D(64, kernel_size=5, strides=2, padding=\"SAME\",\n", " activation=keras.layers.LeakyReLU(0.2),\n", " input_shape=[28, 28, 1]),\n", " keras.layers.Dropout(0.4),\n", " keras.layers.Conv2D(128, kernel_size=5, strides=2, padding=\"SAME\",\n", " activation=keras.layers.LeakyReLU(0.2)),\n", " keras.layers.Dropout(0.4),\n", " keras.layers.Flatten(),\n", " keras.layers.Dense(1, activation=\"sigmoid\")\n", "])\n", "gan = keras.models.Sequential([generator, discriminator])" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [], "source": [ "discriminator.compile(loss=\"binary_crossentropy\", optimizer=\"rmsprop\")\n", "discriminator.trainable = False\n", "gan.compile(loss=\"binary_crossentropy\", optimizer=\"rmsprop\")" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [], "source": [ "X_train_dcgan = X_train.reshape(-1, 28, 28, 1) * 2. - 1. # reshape and rescale" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [], "source": [ "batch_size = 32\n", "dataset = tf.data.Dataset.from_tensor_slices(X_train_dcgan)\n", "dataset = dataset.shuffle(1000)\n", "dataset = dataset.batch(batch_size, drop_remainder=True).prefetch(1)" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [], "source": [ "train_gan(gan, dataset, batch_size, codings_size)" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "noise = tf.random.normal(shape=[batch_size, codings_size])\n", "generated_images = generator(noise)\n", "plot_multiple_images(generated_images, 8)\n", "save_fig(\"dcgan_generated_images_plot\", tight_layout=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Exercise Solutions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Unsupervised pretraining" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's create a small neural network for MNIST classification:" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "X_train_small = X_train[:500]\n", "y_train_small = y_train[:500]\n", "\n", "classifier = keras.models.Sequential([\n", " keras.layers.Reshape([28, 28, 1], input_shape=[28, 28]),\n", " keras.layers.Conv2D(16, kernel_size=3, padding=\"SAME\", activation=\"selu\"),\n", " keras.layers.MaxPool2D(pool_size=2),\n", " keras.layers.Conv2D(32, kernel_size=3, padding=\"SAME\", activation=\"selu\"),\n", " keras.layers.MaxPool2D(pool_size=2),\n", " keras.layers.Conv2D(64, kernel_size=3, padding=\"SAME\", activation=\"selu\"),\n", " keras.layers.MaxPool2D(pool_size=2),\n", " keras.layers.Flatten(),\n", " keras.layers.Dense(20, activation=\"selu\"),\n", " keras.layers.Dense(10, activation=\"softmax\")\n", "])\n", "classifier.compile(loss=\"sparse_categorical_crossentropy\", optimizer=keras.optimizers.SGD(lr=0.02),\n", " metrics=[\"accuracy\"])\n", "history = classifier.fit(X_train_small, y_train_small, epochs=20, validation_data=[X_valid, y_valid])" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "pd.DataFrame(history.history).plot()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "conv_encoder_clone = keras.models.clone_model(conv_encoder)\n", "\n", "pretrained_clf = keras.models.Sequential([\n", " conv_encoder_clone,\n", " keras.layers.Flatten(),\n", " keras.layers.Dense(20, activation=\"selu\"),\n", " keras.layers.Dense(10, activation=\"softmax\")\n", "])" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [], "source": [ "conv_encoder_clone.trainable = False\n", "pretrained_clf.compile(loss=\"sparse_categorical_crossentropy\",\n", " optimizer=keras.optimizers.SGD(lr=0.02),\n", " metrics=[\"accuracy\"])\n", "history = pretrained_clf.fit(X_train_small, y_train_small, epochs=30,\n", " validation_data=[X_valid, y_valid])" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "scrolled": true }, "outputs": [], "source": [ "conv_encoder_clone.trainable = True\n", "pretrained_clf.compile(loss=\"sparse_categorical_crossentropy\",\n", " optimizer=keras.optimizers.SGD(lr=0.02),\n", " metrics=[\"accuracy\"])\n", "history = pretrained_clf.fit(X_train_small, y_train_small, epochs=20,\n", " validation_data=[X_valid, y_valid])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Hashing Using a Binary Autoencoder" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [], "source": [ "tf.random.set_seed(42)\n", "np.random.seed(42)\n", "\n", "hashing_encoder = keras.models.Sequential([\n", " keras.layers.Flatten(input_shape=[28, 28]),\n", " keras.layers.Dense(100, activation=\"selu\"),\n", " keras.layers.GaussianNoise(15.),\n", " keras.layers.Dense(16, activation=\"sigmoid\"),\n", "])\n", "hashing_decoder = keras.models.Sequential([\n", " keras.layers.Dense(100, activation=\"selu\", input_shape=[16]),\n", " keras.layers.Dense(28 * 28, activation=\"sigmoid\"),\n", " keras.layers.Reshape([28, 28])\n", "])\n", "hashing_ae = keras.models.Sequential([hashing_encoder, hashing_decoder])\n", "hashing_ae.compile(loss=\"binary_crossentropy\", optimizer=keras.optimizers.SGD(lr=1.0),\n", " metrics=[rounded_accuracy])\n", "history = hashing_ae.fit(X_train, X_train, epochs=10,\n", " validation_data=[X_valid, X_valid])" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [], "source": [ "show_reconstructions(hashing_ae)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [], "source": [ "plot_activations_histogram(hashing_encoder)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [], "source": [ "hashes = np.round(hashing_encoder.predict(X_valid)).astype(np.int32)\n", "hashes *= np.array([[2**bit for bit in range(16)]])\n", "hashes = hashes.sum(axis=1)\n", "for h in hashes[:5]:\n", " print(\"{:016b}\".format(h))\n", "print(\"...\")" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "scrolled": true }, "outputs": [], "source": [ "n_bits = 4\n", "n_images = 8\n", "plt.figure(figsize=(n_images, n_bits))\n", "for bit_index in range(n_bits):\n", " in_bucket = (hashes & 2**bit_index != 0)\n", " for index, image in zip(range(n_images), X_valid[in_bucket]):\n", " plt.subplot(n_bits, n_images, bit_index * n_images + index + 1)\n", " plt.imshow(image, cmap=\"binary\")\n", " plt.axis(\"off\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" }, "nav_menu": { "height": "381px", "width": "453px" }, "toc": { "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 6, "toc_cell": false, "toc_section_display": "block", "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 1 }