{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "**Chapter 7 – Ensemble Learning and Random Forests**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "_This notebook contains all the sample code and solutions to the exercises in chapter 7._" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Setup" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# To support both python 2 and python 3\n", "from __future__ import division, print_function, unicode_literals\n", "\n", "# Common imports\n", "import numpy as np\n", "import os\n", "\n", "# to make this notebook's output stable across runs\n", "np.random.seed(42)\n", "\n", "# To plot pretty figures\n", "%matplotlib inline\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "plt.rcParams['axes.labelsize'] = 14\n", "plt.rcParams['xtick.labelsize'] = 12\n", "plt.rcParams['ytick.labelsize'] = 12\n", "\n", "# Where to save the figures\n", "PROJECT_ROOT_DIR = \".\"\n", "CHAPTER_ID = \"ensembles\"\n", "\n", "def image_path(fig_id):\n", " return os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id)\n", "\n", "def save_fig(fig_id, tight_layout=True):\n", " print(\"Saving figure\", fig_id)\n", " if tight_layout:\n", " plt.tight_layout()\n", " plt.savefig(image_path(fig_id) + \".png\", format='png', dpi=300)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Voting classifiers" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "heads_proba = 0.51\n", "coin_tosses = (np.random.rand(10000, 10) < heads_proba).astype(np.int32)\n", "cumulative_heads_ratio = np.cumsum(coin_tosses, axis=0) / np.arange(1, 10001).reshape(-1, 1)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "plt.figure(figsize=(8,3.5))\n", "plt.plot(cumulative_heads_ratio)\n", "plt.plot([0, 10000], [0.51, 0.51], \"k--\", linewidth=2, label=\"51%\")\n", "plt.plot([0, 10000], [0.5, 0.5], \"k-\", label=\"50%\")\n", "plt.xlabel(\"Number of coin tosses\")\n", "plt.ylabel(\"Heads ratio\")\n", "plt.legend(loc=\"lower right\")\n", "plt.axis([0, 10000, 0.42, 0.58])\n", "save_fig(\"law_of_large_numbers_plot\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "from sklearn.datasets import make_moons\n", "\n", "X, y = make_moons(n_samples=500, noise=0.30, random_state=42)\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.ensemble import VotingClassifier\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.svm import SVC\n", "\n", "log_clf = LogisticRegression(random_state=42)\n", "rnd_clf = RandomForestClassifier(random_state=42)\n", "svm_clf = SVC(random_state=42)\n", "\n", "voting_clf = VotingClassifier(\n", " estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)],\n", " voting='hard')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "voting_clf.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import accuracy_score\n", "\n", "for clf in (log_clf, rnd_clf, svm_clf, voting_clf):\n", " clf.fit(X_train, y_train)\n", " y_pred = clf.predict(X_test)\n", " print(clf.__class__.__name__, accuracy_score(y_test, y_pred))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "log_clf = LogisticRegression(random_state=42)\n", "rnd_clf = RandomForestClassifier(random_state=42)\n", "svm_clf = SVC(probability=True, random_state=42)\n", "\n", "voting_clf = VotingClassifier(\n", " estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)],\n", " voting='soft')\n", "voting_clf.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import accuracy_score\n", "\n", "for clf in (log_clf, rnd_clf, svm_clf, voting_clf):\n", " clf.fit(X_train, y_train)\n", " y_pred = clf.predict(X_test)\n", " print(clf.__class__.__name__, accuracy_score(y_test, y_pred))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Bagging ensembles" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import BaggingClassifier\n", "from sklearn.tree import DecisionTreeClassifier\n", "\n", "bag_clf = BaggingClassifier(\n", " DecisionTreeClassifier(random_state=42), n_estimators=500,\n", " max_samples=100, bootstrap=True, n_jobs=-1, random_state=42)\n", "bag_clf.fit(X_train, y_train)\n", "y_pred = bag_clf.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import accuracy_score\n", "print(accuracy_score(y_test, y_pred))" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "tree_clf = DecisionTreeClassifier(random_state=42)\n", "tree_clf.fit(X_train, y_train)\n", "y_pred_tree = tree_clf.predict(X_test)\n", "print(accuracy_score(y_test, y_pred_tree))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "from matplotlib.colors import ListedColormap\n", "\n", "def plot_decision_boundary(clf, X, y, axes=[-1.5, 2.5, -1, 1.5], alpha=0.5, contour=True):\n", " x1s = np.linspace(axes[0], axes[1], 100)\n", " x2s = np.linspace(axes[2], axes[3], 100)\n", " x1, x2 = np.meshgrid(x1s, x2s)\n", " X_new = np.c_[x1.ravel(), x2.ravel()]\n", " y_pred = clf.predict(X_new).reshape(x1.shape)\n", " custom_cmap = ListedColormap(['#fafab0','#9898ff','#a0faa0'])\n", " plt.contourf(x1, x2, y_pred, alpha=0.3, cmap=custom_cmap)\n", " if contour:\n", " custom_cmap2 = ListedColormap(['#7d7d58','#4c4c7f','#507d50'])\n", " plt.contour(x1, x2, y_pred, cmap=custom_cmap2, alpha=0.8)\n", " plt.plot(X[:, 0][y==0], X[:, 1][y==0], \"yo\", alpha=alpha)\n", " plt.plot(X[:, 0][y==1], X[:, 1][y==1], \"bs\", alpha=alpha)\n", " plt.axis(axes)\n", " plt.xlabel(r\"$x_1$\", fontsize=18)\n", " plt.ylabel(r\"$x_2$\", fontsize=18, rotation=0)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "plt.figure(figsize=(11,4))\n", "plt.subplot(121)\n", "plot_decision_boundary(tree_clf, X, y)\n", "plt.title(\"Decision Tree\", fontsize=14)\n", "plt.subplot(122)\n", "plot_decision_boundary(bag_clf, X, y)\n", "plt.title(\"Decision Trees with Bagging\", fontsize=14)\n", "save_fig(\"decision_tree_without_and_with_bagging_plot\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Random Forests" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "bag_clf = BaggingClassifier(\n", " DecisionTreeClassifier(splitter=\"random\", max_leaf_nodes=16, random_state=42),\n", " n_estimators=500, max_samples=1.0, bootstrap=True, n_jobs=-1, random_state=42)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "bag_clf.fit(X_train, y_train)\n", "y_pred = bag_clf.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "\n", "rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16, n_jobs=-1, random_state=42)\n", "rnd_clf.fit(X_train, y_train)\n", "\n", "y_pred_rf = rnd_clf.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "np.sum(y_pred == y_pred_rf) / len(y_pred) # almost identical predictions" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "from sklearn.datasets import load_iris\n", "iris = load_iris()\n", "rnd_clf = RandomForestClassifier(n_estimators=500, n_jobs=-1, random_state=42)\n", "rnd_clf.fit(iris[\"data\"], iris[\"target\"])\n", "for name, score in zip(iris[\"feature_names\"], rnd_clf.feature_importances_):\n", " print(name, score)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "rnd_clf.feature_importances_" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "plt.figure(figsize=(6, 4))\n", "\n", "for i in range(15):\n", " tree_clf = DecisionTreeClassifier(max_leaf_nodes=16, random_state=42 + i)\n", " indices_with_replacement = np.random.randint(0, len(X_train), len(X_train))\n", " tree_clf.fit(X[indices_with_replacement], y[indices_with_replacement])\n", " plot_decision_boundary(tree_clf, X, y, axes=[-1.5, 2.5, -1, 1.5], alpha=0.02, contour=False)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Out-of-Bag evaluation" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "bag_clf = BaggingClassifier(\n", " DecisionTreeClassifier(random_state=42), n_estimators=500,\n", " bootstrap=True, n_jobs=-1, oob_score=True, random_state=40)\n", "bag_clf.fit(X_train, y_train)\n", "bag_clf.oob_score_" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "bag_clf.oob_decision_function_" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import accuracy_score\n", "y_pred = bag_clf.predict(X_test)\n", "accuracy_score(y_test, y_pred)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Feature importance" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "from sklearn.datasets import fetch_mldata\n", "mnist = fetch_mldata('MNIST original')" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "rnd_clf = RandomForestClassifier(random_state=42)\n", "rnd_clf.fit(mnist[\"data\"], mnist[\"target\"])" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "def plot_digit(data):\n", " image = data.reshape(28, 28)\n", " plt.imshow(image, cmap = matplotlib.cm.hot,\n", " interpolation=\"nearest\")\n", " plt.axis(\"off\")" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "plot_digit(rnd_clf.feature_importances_)\n", "\n", "cbar = plt.colorbar(ticks=[rnd_clf.feature_importances_.min(), rnd_clf.feature_importances_.max()])\n", "cbar.ax.set_yticklabels(['Not important', 'Very important'])\n", "\n", "save_fig(\"mnist_feature_importance_plot\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# AdaBoost" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import AdaBoostClassifier\n", "\n", "ada_clf = AdaBoostClassifier(\n", " DecisionTreeClassifier(max_depth=1), n_estimators=200,\n", " algorithm=\"SAMME.R\", learning_rate=0.5, random_state=42)\n", "ada_clf.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "plot_decision_boundary(ada_clf, X, y)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "m = len(X_train)\n", "\n", "plt.figure(figsize=(11, 4))\n", "for subplot, learning_rate in ((121, 1), (122, 0.5)):\n", " sample_weights = np.ones(m)\n", " plt.subplot(subplot)\n", " for i in range(5):\n", " svm_clf = SVC(kernel=\"rbf\", C=0.05, random_state=42)\n", " svm_clf.fit(X_train, y_train, sample_weight=sample_weights)\n", " y_pred = svm_clf.predict(X_train)\n", " sample_weights[y_pred != y_train] *= (1 + learning_rate)\n", " plot_decision_boundary(svm_clf, X, y, alpha=0.2)\n", " plt.title(\"learning_rate = {}\".format(learning_rate), fontsize=16)\n", " if subplot == 121:\n", " plt.text(-0.7, -0.65, \"1\", fontsize=14)\n", " plt.text(-0.6, -0.10, \"2\", fontsize=14)\n", " plt.text(-0.5, 0.10, \"3\", fontsize=14)\n", " plt.text(-0.4, 0.55, \"4\", fontsize=14)\n", " plt.text(-0.3, 0.90, \"5\", fontsize=14)\n", "\n", "save_fig(\"boosting_plot\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "list(m for m in dir(ada_clf) if not m.startswith(\"_\") and m.endswith(\"_\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Gradient Boosting" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "np.random.seed(42)\n", "X = np.random.rand(100, 1) - 0.5\n", "y = 3*X[:, 0]**2 + 0.05 * np.random.randn(100)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "from sklearn.tree import DecisionTreeRegressor\n", "\n", "tree_reg1 = DecisionTreeRegressor(max_depth=2, random_state=42)\n", "tree_reg1.fit(X, y)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "y2 = y - tree_reg1.predict(X)\n", "tree_reg2 = DecisionTreeRegressor(max_depth=2, random_state=42)\n", "tree_reg2.fit(X, y2)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "y3 = y2 - tree_reg2.predict(X)\n", "tree_reg3 = DecisionTreeRegressor(max_depth=2, random_state=42)\n", "tree_reg3.fit(X, y3)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "X_new = np.array([[0.8]])" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "y_pred" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "def plot_predictions(regressors, X, y, axes, label=None, style=\"r-\", data_style=\"b.\", data_label=None):\n", " x1 = np.linspace(axes[0], axes[1], 500)\n", " y_pred = sum(regressor.predict(x1.reshape(-1, 1)) for regressor in regressors)\n", " plt.plot(X[:, 0], y, data_style, label=data_label)\n", " plt.plot(x1, y_pred, style, linewidth=2, label=label)\n", " if label or data_label:\n", " plt.legend(loc=\"upper center\", fontsize=16)\n", " plt.axis(axes)\n", "\n", "plt.figure(figsize=(11,11))\n", "\n", "plt.subplot(321)\n", "plot_predictions([tree_reg1], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label=\"$h_1(x_1)$\", style=\"g-\", data_label=\"Training set\")\n", "plt.ylabel(\"$y$\", fontsize=16, rotation=0)\n", "plt.title(\"Residuals and tree predictions\", fontsize=16)\n", "\n", "plt.subplot(322)\n", "plot_predictions([tree_reg1], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label=\"$h(x_1) = h_1(x_1)$\", data_label=\"Training set\")\n", "plt.ylabel(\"$y$\", fontsize=16, rotation=0)\n", "plt.title(\"Ensemble predictions\", fontsize=16)\n", "\n", "plt.subplot(323)\n", "plot_predictions([tree_reg2], X, y2, axes=[-0.5, 0.5, -0.5, 0.5], label=\"$h_2(x_1)$\", style=\"g-\", data_style=\"k+\", data_label=\"Residuals\")\n", "plt.ylabel(\"$y - h_1(x_1)$\", fontsize=16)\n", "\n", "plt.subplot(324)\n", "plot_predictions([tree_reg1, tree_reg2], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label=\"$h(x_1) = h_1(x_1) + h_2(x_1)$\")\n", "plt.ylabel(\"$y$\", fontsize=16, rotation=0)\n", "\n", "plt.subplot(325)\n", "plot_predictions([tree_reg3], X, y3, axes=[-0.5, 0.5, -0.5, 0.5], label=\"$h_3(x_1)$\", style=\"g-\", data_style=\"k+\")\n", "plt.ylabel(\"$y - h_1(x_1) - h_2(x_1)$\", fontsize=16)\n", "plt.xlabel(\"$x_1$\", fontsize=16)\n", "\n", "plt.subplot(326)\n", "plot_predictions([tree_reg1, tree_reg2, tree_reg3], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label=\"$h(x_1) = h_1(x_1) + h_2(x_1) + h_3(x_1)$\")\n", "plt.xlabel(\"$x_1$\", fontsize=16)\n", "plt.ylabel(\"$y$\", fontsize=16, rotation=0)\n", "\n", "save_fig(\"gradient_boosting_plot\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import GradientBoostingRegressor\n", "\n", "gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=3, learning_rate=1.0, random_state=42)\n", "gbrt.fit(X, y)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "gbrt_slow = GradientBoostingRegressor(max_depth=2, n_estimators=200, learning_rate=0.1, random_state=42)\n", "gbrt_slow.fit(X, y)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "plt.figure(figsize=(11,4))\n", "\n", "plt.subplot(121)\n", "plot_predictions([gbrt], X, y, axes=[-0.5, 0.5, -0.1, 0.8], label=\"Ensemble predictions\")\n", "plt.title(\"learning_rate={}, n_estimators={}\".format(gbrt.learning_rate, gbrt.n_estimators), fontsize=14)\n", "\n", "plt.subplot(122)\n", "plot_predictions([gbrt_slow], X, y, axes=[-0.5, 0.5, -0.1, 0.8])\n", "plt.title(\"learning_rate={}, n_estimators={}\".format(gbrt_slow.learning_rate, gbrt_slow.n_estimators), fontsize=14)\n", "\n", "save_fig(\"gbrt_learning_rate_plot\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Gradient Boosting with Early stopping" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.metrics import mean_squared_error\n", "\n", "X_train, X_val, y_train, y_val = train_test_split(X, y, random_state=49)\n", "\n", "gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=120, random_state=42)\n", "gbrt.fit(X_train, y_train)\n", "\n", "errors = [mean_squared_error(y_val, y_pred)\n", " for y_pred in gbrt.staged_predict(X_val)]\n", "bst_n_estimators = np.argmin(errors)\n", "\n", "gbrt_best = GradientBoostingRegressor(max_depth=2,n_estimators=bst_n_estimators, random_state=42)\n", "gbrt_best.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "min_error = np.min(errors)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "plt.figure(figsize=(11, 4))\n", "\n", "plt.subplot(121)\n", "plt.plot(errors, \"b.-\")\n", "plt.plot([bst_n_estimators, bst_n_estimators], [0, min_error], \"k--\")\n", "plt.plot([0, 120], [min_error, min_error], \"k--\")\n", "plt.plot(bst_n_estimators, min_error, \"ko\")\n", "plt.text(bst_n_estimators, min_error*1.2, \"Minimum\", ha=\"center\", fontsize=14)\n", "plt.axis([0, 120, 0, 0.01])\n", "plt.xlabel(\"Number of trees\")\n", "plt.title(\"Validation error\", fontsize=14)\n", "\n", "plt.subplot(122)\n", "plot_predictions([gbrt_best], X, y, axes=[-0.5, 0.5, -0.1, 0.8])\n", "plt.title(\"Best model (%d trees)\" % bst_n_estimators, fontsize=14)\n", "\n", "save_fig(\"early_stopping_gbrt_plot\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [], "source": [ "gbrt = GradientBoostingRegressor(max_depth=2, warm_start=True, random_state=42)\n", "\n", "min_val_error = float(\"inf\")\n", "error_going_up = 0\n", "for n_estimators in range(1, 120):\n", " gbrt.n_estimators = n_estimators\n", " gbrt.fit(X_train, y_train)\n", " y_pred = gbrt.predict(X_val)\n", " val_error = mean_squared_error(y_val, y_pred)\n", " if val_error < min_val_error:\n", " min_val_error = val_error\n", " error_going_up = 0\n", " else:\n", " error_going_up += 1\n", " if error_going_up == 5:\n", " break # early stopping" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "print(gbrt.n_estimators)" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "print(\"Minimum validation MSE:\", min_val_error)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Using XGBoost" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [], "source": [ "try:\n", " import xgboost\n", "except ImportError as ex:\n", " print(\"Error: the xgboost library is not installed.\")\n", " xgboost = None" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [], "source": [ "if xgboost is not None: # not shown in the book\n", " xgb_reg = xgboost.XGBRegressor(random_state=42)\n", " xgb_reg.fit(X_train, y_train)\n", " y_pred = xgb_reg.predict(X_val)\n", " val_error = mean_squared_error(y_val, y_pred)\n", " print(\"Validation MSE:\", val_error)" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [], "source": [ "if xgboost is not None: # not shown in the book\n", " xgb_reg.fit(X_train, y_train,\n", " eval_set=[(X_val, y_val)], early_stopping_rounds=2)\n", " y_pred = xgb_reg.predict(X_val)\n", " val_error = mean_squared_error(y_val, y_pred)\n", " print(\"Validation MSE:\", val_error)" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [], "source": [ "%timeit xgboost.XGBRegressor().fit(X_train, y_train) if xgboost is not None else None" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [], "source": [ "%timeit GradientBoostingRegressor().fit(X_train, y_train)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Exercise solutions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Coming soon**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" }, "nav_menu": { "height": "252px", "width": "333px" }, "toc": { "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 6, "toc_cell": false, "toc_section_display": "block", "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 1 }