# TensorFlow is much easier to install using Anaconda, especially # on Windows or when using a GPU. Please see the installation # instructions in INSTALL.md ##### Core scientific packages jupyterlab~=3.2.0 matplotlib~=3.4.3 numpy~=1.19.5 pandas~=1.3.3 scipy~=1.7.1 ##### Machine Learning packages scikit-learn~=1.0 # Optional: the XGBoost library is only used in chapter 7 xgboost~=1.4.2 # Optional: the transformers library is only using in chapter 16 transformers~=4.11.3 ##### TensorFlow-related packages # If you have a TF-compatible GPU and you want to enable GPU support, then # replace tensorflow-serving-api with tensorflow-serving-api-gpu. # Your GPU must have CUDA Compute Capability 3.5 or higher support, and # you must install CUDA, cuDNN and more: see tensorflow.org for the detailed # installation instructions. tensorflow~=2.6.0 # Optional: the TF Serving API library is just needed for chapter 19. tensorflow-serving-api~=2.6.0 # or tensorflow-serving-api-gpu if gpu tensorboard~=2.7.0 tensorboard-plugin-profile~=2.5.0 tensorflow-datasets~=4.4.0 tensorflow-hub~=0.12.0 tensorflow-probability~=0.14.1 # Optional: only used in chapter 12. # NOT AVAILABLE ON WINDOWS tfx~=1.3.0 # Optional: only used in chapter 15. # NOT AVAILABLE ON WINDOWS tensorflow-addons~=0.14.0 ##### Reinforcement Learning library (chapter 17) # There are a few dependencies you need to install first, check out: # https://github.com/openai/gym#installing-everything gym[Box2D]~=0.21.0 atari-py==0.2.5 # On Windows, install atari_py using: # pip install --no-index -f https://github.com/Kojoley/atari-py/releases atari_py tf-agents~=0.10.0 ##### Image manipulation Pillow~=8.4.0 graphviz~=0.17 opencv-python~=4.5.3.56 pyglet~=1.5.21 #pyvirtualdisplay # needed in chapter 17, if on a headless server # (i.e., without screen, e.g., Colab or VM) ##### Additional utilities # Efficient jobs (caching, parallelism, persistence) joblib~=0.14.1 # Easy http requests requests~=2.26.0 # Nice utility to diff Jupyter Notebooks. nbdime~=3.1.0 # May be useful with Pandas for complex "where" clauses (e.g., Pandas # tutorial). numexpr~=2.7.3 # Optional: these libraries can be useful in the chapter 3, exercise 4. nltk~=3.6.5 urlextract~=1.4.0 # Optional: these libraries are only used in chapter 16 ftfy~=6.0.3 # Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook support tqdm~=4.62.3 ipywidgets~=7.6.5