name: tf2 channels: - conda-forge - defaults dependencies: - atari_py=0.2 # used only in chapter 18 - ftfy=5.8 # used only in chapter 16 by the transformers library - graphviz # used only in chapter 6 for dot files - gym=0.18 # used only in chapter 18 - ipython=7.20 # a powerful Python shell - ipywidgets=7.6 # optionally used only in chapter 12 for tqdm in Jupyter - joblib=0.14 # used only in chapter 2 to save/load Scikit-Learn models - jupyter=1.0 # to edit and run Jupyter notebooks - matplotlib=3.3 # beautiful plots. See tutorial tools_matplotlib.ipynb - nbdime=2.1 # optional tool to diff Jupyter notebooks - nltk=3.4 # optionally used in chapter 3, exercise 4 - numexpr=2.7 # used only in the Pandas tutorial for numerical expressions - numpy=1.19 # Powerful n-dimensional arrays and numerical computing tools - opencv=4.5 # used only in chapter 18 by TF Agents for image preprocessing - pandas=1.2 # data analysis and manipulation tool - pillow=8.1 # image manipulation library, (used by matplotlib.image.imread) - pip # Python's package-management system - py-xgboost=1.3 # used only in chapter 7 for optimized Gradient Boosting - pyglet=1.5 # used only in chapter 18 to render environments - pyopengl=3.1 # used only in chapter 18 to render environments - python=3.7 # Python! Not using latest version as some libs lack support - python-graphviz # used only in chapter 6 for dot files #- pyvirtualdisplay=1.3 # used only in chapter 18 if on headless server - requests=2.25 # used only in chapter 19 for REST API queries - scikit-learn=0.24 # machine learning library - scipy=1.6 # scientific/technical computing library - tqdm=4.56 # a progress bar library - transformers=4.3 # Natural Language Processing lib for TF or PyTorch - wheel # built-package format for pip - widgetsnbextension=3.5 # interactive HTML widgets for Jupyter notebooks - pip: - tensorboard-plugin-profile==2.4.0 # profiling plugin for TensorBoard - tensorboard==2.4.1 # TensorFlow's visualization toolkit - tensorflow-addons==0.12.1 # used only in chapter 16 for a seq2seq impl. - tensorflow-datasets==3.0.0 # datasets repository, ready to use - tensorflow-hub==0.9.0 # trained ML models repository, ready to use - tensorflow-probability==0.12.1 # Optional. Probability/Stats lib. - tensorflow-serving-api==2.4.1 # or tensorflow-serving-api-gpu if gpu - tensorflow==2.4.1 # Deep Learning library - tf-agents==0.7.1 # Reinforcement Learning lib based on TensorFlow - tfx==0.27.0 # platform to deploy production ML pipelines - urlextract==1.2.0 # optionally used in chapter 3, exercise 4