# First make sure to update pip: # $ sudo python3 -m pip install --upgrade pip # # Then you probably want to work in a virtualenv (optional): # $ sudo python3 -m pip install --upgrade virtualenv # Or if you prefer you can install virtualenv using your favorite packaging # system. E.g., in Ubuntu: # $ sudo apt-get update && sudo apt-get install virtualenv # Then: # $ cd $my_work_dir # $ virtualenv my_env # $ . my_env/bin/activate # # Next, optionally uncomment the OpenAI gym lines (see below). # If you do, make sure to install the dependencies first. # # Then install these requirements: # $ python3 -m pip install --upgrade -r requirements.txt # # Finally, start jupyter: # $ jupyter notebook # ##### Core scientific packages jupyter==1.0.0 matplotlib==3.1.1 numpy==1.17.2 pandas==0.25.1 scipy==1.3.1 ##### Machine Learning packages scikit-learn==0.20.4 # Optional: the XGBoost library is only used in the ensemble learning chapter. xgboost==0.90 ##### TensorFlow-related packages # Replace tensorflow with tensorflow-gpu if you want GPU support. If so, # you need a GPU card with CUDA Compute Capability 3.5 or higher support, and # you must install CUDA, cuDNN and more: see tensorflow.org for the detailed # installation instructions. tensorflow==2.0.0 #tensorflow-gpu==2.0.0 tensorboard==2.0.0 tensorflow-datasets==1.2.0 tensorflow-hub==0.6.0 # Optional: only used in chapter 13. tfx==0.14.0 # Optional: only used in chapter 16. #tensorflow-addons==0.6.0 # Optional: the TF Agents library is only needed in chapter 18 tf-agents-nightly # Optional: the TF Serving API library is just needed for chapter 19. tensorflow-serving-api==1.14.0 ##### Image manipulation imageio==2.6.0 Pillow==6.2.0 scikit-image==0.15.0 graphviz==0.10.1 ##### Reinforcement Learning library # OpenAI gym is only needed in chapter 18. # There are a few dependencies you need to install first, check out: # https://github.com/openai/gym#installing-everything gym[atari,box2d,classic_control]==0.15.3 ##### Additional utilities # Joblib is a set of tools to provide lightweight pipelining joblib==0.13.2 # May be useful with Pandas for complex "where" clauses (e.g., Pandas # tutorial). numexpr==2.7.0 # Optional: these libraries can be useful in chapter 3, exercise 4. nltk==3.4.5 urlextract==0.13.0 # Needed in chapter 19. requests==2.22.0 # Optional: nice utility to diff Jupyter Notebooks. #nbdime==1.1.0 # Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook support tqdm==4.36.1 ipywidgets==7.5.1