{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Comparison of Batch, Mini-Batch and Stochastic Gradient Descent" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook displays an animation comparing Batch, Mini-Batch and Stochastic Gradient Descent (introduced in Chapter 4). Thanks to [Daniel Ingram](https://github.com/daniel-s-ingram) who contributed this notebook." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", " \n", " \n", "
\n", " \"Open\n", " \n", " \n", "
" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "%matplotlib nbagg\n", "import matplotlib.pyplot as plt\n", "from matplotlib.animation import FuncAnimation" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "m = 100\n", "X = 2*np.random.rand(m, 1)\n", "X_b = np.c_[np.ones((m, 1)), X]\n", "y = 4 + 3*X + np.random.rand(m, 1)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def batch_gradient_descent():\n", " n_iterations = 1000\n", " learning_rate = 0.05\n", " thetas = np.random.randn(2, 1)\n", " thetas_path = [thetas]\n", " for i in range(n_iterations):\n", " gradients = 2*X_b.T.dot(X_b.dot(thetas) - y)/m\n", " thetas = thetas - learning_rate*gradients\n", " thetas_path.append(thetas)\n", "\n", " return thetas_path" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def stochastic_gradient_descent():\n", " n_epochs = 50\n", " t0, t1 = 5, 50\n", " thetas = np.random.randn(2, 1)\n", " thetas_path = [thetas]\n", " for epoch in range(n_epochs):\n", " for i in range(m):\n", " random_index = np.random.randint(m)\n", " xi = X_b[random_index:random_index+1]\n", " yi = y[random_index:random_index+1]\n", " gradients = 2*xi.T.dot(xi.dot(thetas) - yi)\n", " eta = learning_schedule(epoch*m + i, t0, t1)\n", " thetas = thetas - eta*gradients\n", " thetas_path.append(thetas)\n", "\n", " return thetas_path" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def mini_batch_gradient_descent():\n", " n_iterations = 50\n", " minibatch_size = 20\n", " t0, t1 = 200, 1000\n", " thetas = np.random.randn(2, 1)\n", " thetas_path = [thetas]\n", " t = 0\n", " for epoch in range(n_iterations):\n", " shuffled_indices = np.random.permutation(m)\n", " X_b_shuffled = X_b[shuffled_indices]\n", " y_shuffled = y[shuffled_indices]\n", " for i in range(0, m, minibatch_size):\n", " t += 1\n", " xi = X_b_shuffled[i:i+minibatch_size]\n", " yi = y_shuffled[i:i+minibatch_size]\n", " gradients = 2*xi.T.dot(xi.dot(thetas) - yi)/minibatch_size\n", " eta = learning_schedule(t, t0, t1)\n", " thetas = thetas - eta*gradients\n", " thetas_path.append(thetas)\n", "\n", " return thetas_path" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def compute_mse(theta):\n", " return np.sum((np.dot(X_b, theta) - y)**2)/m" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def learning_schedule(t, t0, t1):\n", " return t0/(t+t1)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "theta0, theta1 = np.meshgrid(np.arange(0, 5, 0.1), np.arange(0, 5, 0.1))\n", "r, c = theta0.shape\n", "cost_map = np.array([[0 for _ in range(c)] for _ in range(r)])\n", "for i in range(r):\n", " for j in range(c):\n", " theta = np.array([theta0[i,j], theta1[i,j]])\n", " cost_map[i,j] = compute_mse(theta)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "exact_solution = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)\n", "bgd_thetas = np.array(batch_gradient_descent())\n", "sgd_thetas = np.array(stochastic_gradient_descent())\n", "mbgd_thetas = np.array(mini_batch_gradient_descent())" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "bgd_len = len(bgd_thetas)\n", "sgd_len = len(sgd_thetas)\n", "mbgd_len = len(mbgd_thetas)\n", "n_iter = min(bgd_len, sgd_len, mbgd_len)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(10, 5))\n", "data_ax = fig.add_subplot(121)\n", "cost_ax = fig.add_subplot(122)\n", "\n", "cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*')\n", "cost_img = cost_ax.pcolor(theta0, theta1, cost_map)\n", "fig.colorbar(cost_img)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "def animate(i):\n", " data_ax.cla()\n", " cost_ax.cla()\n", "\n", " data_ax.plot(X, y, 'k.')\n", "\n", " cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*')\n", " cost_ax.pcolor(theta0, theta1, cost_map)\n", "\n", " data_ax.plot(X, X_b.dot(bgd_thetas[i,:]), 'r-')\n", " cost_ax.plot(bgd_thetas[:i,0], bgd_thetas[:i,1], 'r--')\n", "\n", " data_ax.plot(X, X_b.dot(sgd_thetas[i,:]), 'g-')\n", " cost_ax.plot(sgd_thetas[:i,0], sgd_thetas[:i,1], 'g--')\n", "\n", " data_ax.plot(X, X_b.dot(mbgd_thetas[i,:]), 'b-')\n", " cost_ax.plot(mbgd_thetas[:i,0], mbgd_thetas[:i,1], 'b--')\n", "\n", " data_ax.set_xlim([0, 2])\n", " data_ax.set_ylim([0, 15])\n", " cost_ax.set_xlim([0, 5])\n", " cost_ax.set_ylim([0, 5])\n", "\n", " data_ax.set_xlabel(r'$x_1$')\n", " data_ax.set_ylabel(r'$y$', rotation=0)\n", " cost_ax.set_xlabel(r'$\\theta_0$')\n", " cost_ax.set_ylabel(r'$\\theta_1$')\n", "\n", " data_ax.legend(('Data', 'BGD', 'SGD', 'MBGD'), loc=\"upper left\")\n", " cost_ax.legend(('Normal Equation', 'BGD', 'SGD', 'MBGD'), loc=\"upper left\")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "animation = FuncAnimation(fig, animate, frames=n_iter)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" } }, "nbformat": 4, "nbformat_minor": 4 }