name: homl3 channels: - conda-forge - defaults dependencies: - box2d-py=2.3 # used only in chapter 18, exercise 8 - ftfy=6.1 # used only in chapter 16 by the transformers library - graphviz # used only in chapter 6 for dot files - python-graphviz # used only in chapter 6 for dot files - ipython=8.5 # a powerful Python shell - ipywidgets=8.0 # optionally used only in chapter 12 for tqdm in Jupyter - joblib=1.1 # used only in chapter 2 to save/load Scikit-Learn models - jupyterlab=3.4 # to edit and run Jupyter notebooks - matplotlib=3.5 # beautiful plots. See tutorial tools_matplotlib.ipynb - nbdime=3.1 # optional tool to diff Jupyter notebooks - nltk=3.6 # optionally used in chapter 3, exercise 4 - numexpr=2.8 # used only in the Pandas tutorial for numerical expressions - numpy=1.23 # Powerful n-dimensional arrays and numerical computing tools - pandas=1.4 # data analysis and manipulation tool - pillow=9.2 # image manipulation library, (used by matplotlib.image.imread) - pip # Python's package-management system - py-xgboost=1.6 # used only in chapter 6 for optimized Gradient Boosting - pydot=1.4 # used only for in chapter 10 for tf.keras.utils.plot_model() - pyglet=1.5 # used only in chapter 18 to render environments - pyopengl=3.1 # used only in chapter 18 to render environments - python=3.10 # your beloved programming language! :) - requests=2.28 # used only in chapter 19 for REST API queries - scikit-learn=1.1 # machine learning library - scipy=1.9 # scientific/technical computing library - statsmodels=0.13 # used only in chapter 15 for time series analysis - tqdm=4.64 # used only in chapter 12 to display nice progress bars - wheel # built-package format for pip - widgetsnbextension=4.0 # interactive HTML widgets for Jupyter notebooks - pip: - keras-tuner~=1.1.3 # used in chapters 10 and 19 for hyperparameter tuning - tensorboard-plugin-profile~=2.8.0 # profiling plugin for TensorBoard - tensorboard~=2.10.0 # TensorFlow's visualization toolkit - tensorflow-addons~=0.17.1 # used in chapters 11 & 16 (for AdamW & seq2seq) - tensorflow-datasets~=4.6.0 # datasets repository, ready to use - tensorflow-hub~=0.12.0 # trained ML models repository, ready to use - tensorflow-serving-api~=2.10.0 # or tensorflow-serving-api-gpu if gpu - tensorflow~=2.10.0 # Deep Learning library - transformers~=4.21.3 # Natural Language Processing lib for TF or PyTorch - urlextract~=1.6.0 # optionally used in chapter 3, exercise 4 - gym[atari,accept-rom-license]~=0.26.1 # used only in chapter 18 - google-cloud-aiplatform~=1.17.0 # used only in chapter 19 - google-cloud-storage~=2.5.0 # used only in chapter 19