{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "**Chapter 10 – Introduction to Artificial Neural Networks**" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "_This notebook contains all the sample code and solutions to the exercices in chapter 10._" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# Setup" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "# To support both python 2 and python 3\n", "from __future__ import division, print_function, unicode_literals\n", "\n", "# Common imports\n", "import numpy as np\n", "import numpy.random as rnd\n", "import os\n", "\n", "# to make this notebook's output stable across runs\n", "rnd.seed(42)\n", "\n", "# To plot pretty figures\n", "%matplotlib inline\n", "import matplotlib\n", "import matplotlib.pyplot as plt\n", "plt.rcParams['axes.labelsize'] = 14\n", "plt.rcParams['xtick.labelsize'] = 12\n", "plt.rcParams['ytick.labelsize'] = 12\n", "\n", "# Where to save the figures\n", "PROJECT_ROOT_DIR = \".\"\n", "CHAPTER_ID = \"ann\"\n", "\n", "def save_fig(fig_id, tight_layout=True):\n", " path = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id + \".png\")\n", " print(\"Saving figure\", fig_id)\n", " if tight_layout:\n", " plt.tight_layout()\n", " plt.savefig(path, format='png', dpi=300)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# Perceptrons" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.datasets import load_iris\n", "from sklearn.linear_model import Perceptron\n", "\n", "iris = load_iris()\n", "X = iris.data[:, (2, 3)] # petal length, petal width\n", "y = (iris.target == 0).astype(np.int)\n", "\n", "per_clf = Perceptron(random_state=42)\n", "per_clf.fit(X, y)\n", "\n", "y_pred = per_clf.predict([[2, 0.5]])" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "y_pred" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "a = -per_clf.coef_[0][0] / per_clf.coef_[0][1]\n", "b = -per_clf.intercept_ / per_clf.coef_[0][1]\n", "\n", "axes = [0, 5, 0, 2]\n", "\n", "x0, x1 = np.meshgrid(\n", " np.linspace(axes[0], axes[1], 500).reshape(-1, 1),\n", " np.linspace(axes[2], axes[3], 200).reshape(-1, 1),\n", " )\n", "X_new = np.c_[x0.ravel(), x1.ravel()]\n", "y_predict = per_clf.predict(X_new)\n", "zz = y_predict.reshape(x0.shape)\n", "\n", "plt.figure(figsize=(10, 4))\n", "plt.plot(X[y==0, 0], X[y==0, 1], \"bs\", label=\"Not Iris-Setosa\")\n", "plt.plot(X[y==1, 0], X[y==1, 1], \"yo\", label=\"Iris-Setosa\")\n", "\n", "plt.plot([axes[0], axes[1]], [a * axes[0] + b, a * axes[1] + b], \"k-\", linewidth=3)\n", "from matplotlib.colors import ListedColormap\n", "custom_cmap = ListedColormap(['#9898ff', '#fafab0'])\n", "\n", "plt.contourf(x0, x1, zz, cmap=custom_cmap, linewidth=5)\n", "plt.xlabel(\"Petal length\", fontsize=14)\n", "plt.ylabel(\"Petal width\", fontsize=14)\n", "plt.legend(loc=\"lower right\", fontsize=14)\n", "plt.axis(axes)\n", "\n", "save_fig(\"perceptron_iris_plot\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# Activation functions" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "def logit(z):\n", " return 1 / (1 + np.exp(-z))\n", "\n", "def relu(z):\n", " return np.maximum(0, z)\n", "\n", "def derivative(f, z, eps=0.000001):\n", " return (f(z + eps) - f(z - eps))/(2 * eps)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "z = np.linspace(-5, 5, 200)\n", "\n", "plt.figure(figsize=(11,4))\n", "\n", "plt.subplot(121)\n", "plt.plot(z, np.sign(z), \"r-\", linewidth=2, label=\"Step\")\n", "plt.plot(z, logit(z), \"g--\", linewidth=2, label=\"Logit\")\n", "plt.plot(z, np.tanh(z), \"b-\", linewidth=2, label=\"Tanh\")\n", "plt.plot(z, relu(z), \"m-.\", linewidth=2, label=\"ReLU\")\n", "plt.grid(True)\n", "plt.legend(loc=\"center right\", fontsize=14)\n", "plt.title(\"Activation functions\", fontsize=14)\n", "plt.axis([-5, 5, -1.2, 1.2])\n", "\n", "plt.subplot(122)\n", "plt.plot(z, derivative(np.sign, z), \"r-\", linewidth=2, label=\"Step\")\n", "plt.plot(0, 0, \"ro\", markersize=5)\n", "plt.plot(0, 0, \"rx\", markersize=10)\n", "plt.plot(z, derivative(logit, z), \"g--\", linewidth=2, label=\"Logit\")\n", "plt.plot(z, derivative(np.tanh, z), \"b-\", linewidth=2, label=\"Tanh\")\n", "plt.plot(z, derivative(relu, z), \"m-.\", linewidth=2, label=\"ReLU\")\n", "plt.grid(True)\n", "#plt.legend(loc=\"center right\", fontsize=14)\n", "plt.title(\"Derivatives\", fontsize=14)\n", "plt.axis([-5, 5, -0.2, 1.2])\n", "\n", "save_fig(\"activation_functions_plot\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "def heaviside(z):\n", " return (z >= 0).astype(z.dtype)\n", "\n", "def sigmoid(z):\n", " return 1/(1+np.exp(-z))\n", "\n", "def mlp_xor(x1, x2, activation=heaviside):\n", " return activation(-activation(x1 + x2 - 1.5) + activation(x1 + x2 - 0.5) - 0.5)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "x1s = np.linspace(-0.2, 1.2, 100)\n", "x2s = np.linspace(-0.2, 1.2, 100)\n", "x1, x2 = np.meshgrid(x1s, x2s)\n", "\n", "z1 = mlp_xor(x1, x2, activation=heaviside)\n", "z2 = mlp_xor(x1, x2, activation=sigmoid)\n", "\n", "plt.figure(figsize=(10,4))\n", "\n", "plt.subplot(121)\n", "plt.contourf(x1, x2, z1)\n", "plt.plot([0, 1], [0, 1], \"gs\", markersize=20)\n", "plt.plot([0, 1], [1, 0], \"y^\", markersize=20)\n", "plt.title(\"Activation function: heaviside\", fontsize=14)\n", "plt.grid(True)\n", "\n", "plt.subplot(122)\n", "plt.contourf(x1, x2, z2)\n", "plt.plot([0, 1], [0, 1], \"gs\", markersize=20)\n", "plt.plot([0, 1], [1, 0], \"y^\", markersize=20)\n", "plt.title(\"Activation function: sigmoid\", fontsize=14)\n", "plt.grid(True)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# FNN for MNIST" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## using tf.learn" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "from tensorflow.examples.tutorials.mnist import input_data\n", "\n", "mnist = input_data.read_data_sets(\"/tmp/data/\")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "X_train = mnist.train.images\n", "X_test = mnist.test.images\n", "y_train = mnist.train.labels.astype(\"int\")\n", "y_test = mnist.test.labels.astype(\"int\")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "import tensorflow as tf\n", "\n", "feature_cols = tf.contrib.learn.infer_real_valued_columns_from_input(X_train)\n", "dnn_clf = tf.contrib.learn.DNNClassifier(hidden_units=[300,100], n_classes=10,\n", " feature_columns=feature_cols)\n", "dnn_clf = tf.contrib.learn.SKCompat(dnn_clf) # if TensorFlow >= 1.1\n", "dnn_clf.fit(X_train, y_train, batch_size=50, steps=40000)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "from sklearn.metrics import accuracy_score\n", "\n", "y_pred = dnn_clf.predict(X_test)\n", "accuracy_score(y_test, y_pred['classes'])" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "from sklearn.metrics import log_loss\n", "\n", "y_pred_proba = y_pred['probabilities']\n", "log_loss(y_test, y_pred_proba)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "deletable": true, "editable": true }, "source": [ "## Using plain TensorFlow" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "import tensorflow as tf\n", "\n", "n_inputs = 28*28 # MNIST\n", "n_hidden1 = 300\n", "n_hidden2 = 100\n", "n_outputs = 10" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "tf.reset_default_graph()\n", "\n", "X = tf.placeholder(tf.float32, shape=(None, n_inputs), name=\"X\")\n", "y = tf.placeholder(tf.int64, shape=(None), name=\"y\")" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "def neuron_layer(X, n_neurons, name, activation=None):\n", " with tf.name_scope(name):\n", " n_inputs = int(X.get_shape()[1])\n", " stddev = 2 / np.sqrt(n_inputs)\n", " init = tf.truncated_normal((n_inputs, n_neurons), stddev=stddev)\n", " W = tf.Variable(init, name=\"kernel\")\n", " b = tf.Variable(tf.zeros([n_neurons]), name=\"bias\")\n", " Z = tf.matmul(X, W) + b\n", " if activation is not None:\n", " return activation(Z)\n", " else:\n", " return Z" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "with tf.name_scope(\"dnn\"):\n", " hidden1 = neuron_layer(X, n_hidden1, name=\"hidden1\",\n", " activation=tf.nn.relu)\n", " hidden2 = neuron_layer(hidden1, n_hidden2, name=\"hidden2\",\n", " activation=tf.nn.relu)\n", " logits = neuron_layer(hidden2, n_outputs, name=\"outputs\")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "with tf.name_scope(\"loss\"):\n", " xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,\n", " logits=logits)\n", " loss = tf.reduce_mean(xentropy, name=\"loss\")" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "learning_rate = 0.01\n", "\n", "with tf.name_scope(\"train\"):\n", " optimizer = tf.train.GradientDescentOptimizer(learning_rate)\n", " training_op = optimizer.minimize(loss)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "with tf.name_scope(\"eval\"):\n", " correct = tf.nn.in_top_k(logits, y, 1)\n", " accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "init = tf.global_variables_initializer()\n", "saver = tf.train.Saver()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "n_epochs = 40\n", "batch_size = 50" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "with tf.Session() as sess:\n", " init.run()\n", " for epoch in range(n_epochs):\n", " for iteration in range(mnist.train.num_examples // batch_size):\n", " X_batch, y_batch = mnist.train.next_batch(batch_size)\n", " sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n", " acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})\n", " acc_test = accuracy.eval(feed_dict={X: mnist.test.images,\n", " y: mnist.test.labels})\n", " print(epoch, \"Train accuracy:\", acc_train, \"Test accuracy:\", acc_test)\n", "\n", " save_path = saver.save(sess, \"./my_model_final.ckpt\")" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "with tf.Session() as sess:\n", " saver.restore(sess, \"./my_model_final.ckpt\") # or better, use save_path\n", " X_new_scaled = mnist.test.images[:20]\n", " Z = logits.eval(feed_dict={X: X_new_scaled})\n", " y_pred = np.argmax(Z, axis=1)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "print(\"Predicted classes:\", y_pred)\n", "print(\"Actual classes: \", mnist.test.labels[:20])" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "from IPython.display import clear_output, Image, display, HTML\n", "\n", "def strip_consts(graph_def, max_const_size=32):\n", " \"\"\"Strip large constant values from graph_def.\"\"\"\n", " strip_def = tf.GraphDef()\n", " for n0 in graph_def.node:\n", " n = strip_def.node.add() \n", " n.MergeFrom(n0)\n", " if n.op == 'Const':\n", " tensor = n.attr['value'].tensor\n", " size = len(tensor.tensor_content)\n", " if size > max_const_size:\n", " tensor.tensor_content = b\"\"%size\n", " return strip_def\n", "\n", "def show_graph(graph_def, max_const_size=32):\n", " \"\"\"Visualize TensorFlow graph.\"\"\"\n", " if hasattr(graph_def, 'as_graph_def'):\n", " graph_def = graph_def.as_graph_def()\n", " strip_def = strip_consts(graph_def, max_const_size=max_const_size)\n", " code = \"\"\"\n", " \n", " \n", "
\n", " \n", "
\n", " \"\"\".format(data=repr(str(strip_def)), id='graph'+str(np.random.rand()))\n", "\n", " iframe = \"\"\"\n", " \n", " \"\"\".format(code.replace('\"', '"'))\n", " display(HTML(iframe))" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "show_graph(tf.get_default_graph())" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Using `dense()` instead of `neuron_layer()`" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Note: the book uses `tensorflow.contrib.layers.fully_connected()` rather than `tf.layers.dense()` (which did not exist when this chapter was written). It is now preferable to use `tf.layers.dense()`, because anything in the contrib module may change or be deleted without notice. The `dense()` function is almost identical to the `fully_connected()` function, except for a few minor differences:\n", "* several parameters are renamed: `scope` becomes `name`, `activation_fn` becomes `activation` (and similarly the `_fn` suffix is removed from other parameters such as `normalizer_fn`), `weights_initializer` becomes `kernel_initializer`, etc.\n", "* the default `activation` is now `None` rather than `tf.nn.relu`.\n", "* a few more differences are presented in chapter 11." ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "n_inputs = 28*28 # MNIST\n", "n_hidden1 = 300\n", "n_hidden2 = 100\n", "n_outputs = 10" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "tf.reset_default_graph()\n", "\n", "X = tf.placeholder(tf.float32, shape=(None, n_inputs), name=\"X\")\n", "y = tf.placeholder(tf.int64, shape=(None), name=\"y\") " ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "with tf.name_scope(\"dnn\"):\n", " hidden1 = tf.layers.dense(X, n_hidden1, name=\"hidden1\",\n", " activation=tf.nn.relu)\n", " hidden2 = tf.layers.dense(hidden1, n_hidden2, name=\"hidden2\",\n", " activation=tf.nn.relu)\n", " logits = tf.layers.dense(hidden2, n_outputs, name=\"outputs\")" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": true }, "outputs": [], "source": [ "with tf.name_scope(\"loss\"):\n", " xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)\n", " loss = tf.reduce_mean(xentropy, name=\"loss\")" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": true }, "outputs": [], "source": [ "learning_rate = 0.01\n", "\n", "with tf.name_scope(\"train\"):\n", " optimizer = tf.train.GradientDescentOptimizer(learning_rate)\n", " training_op = optimizer.minimize(loss)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": true }, "outputs": [], "source": [ "with tf.name_scope(\"eval\"):\n", " correct = tf.nn.in_top_k(logits, y, 1)\n", " accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": true }, "outputs": [], "source": [ "init = tf.global_variables_initializer()\n", "saver = tf.train.Saver()" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "n_epochs = 20\n", "n_batches = 50\n", "\n", "with tf.Session() as sess:\n", " init.run()\n", " for epoch in range(n_epochs):\n", " for iteration in range(mnist.train.num_examples // batch_size):\n", " X_batch, y_batch = mnist.train.next_batch(batch_size)\n", " sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n", " acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})\n", " acc_test = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels})\n", " print(epoch, \"Train accuracy:\", acc_train, \"Test accuracy:\", acc_test)\n", "\n", " save_path = saver.save(sess, \"./my_model_final.ckpt\")" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "show_graph(tf.get_default_graph())" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "deletable": true, "editable": true }, "source": [ "# Exercise solutions" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## 1. to 8." ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "deletable": true, "editable": true }, "source": [ "See appendix A." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 9." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "_Train a deep MLP on the MNIST dataset and see if you can get over 98% precision. Just like in the last exercise of chapter 9, try adding all the bells and whistles (i.e., save checkpoints, restore the last checkpoint in case of an interruption, add summaries, plot learning curves using TensorBoard, and so on)._" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First let's create the deep net. It's exactly the same as earlier, with just one addition: we add a `tf.summary.scalar()` to track the loss and the accuracy during training, so we can view nice learning curves using TensorBoard." ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "n_inputs = 28*28 # MNIST\n", "n_hidden1 = 300\n", "n_hidden2 = 100\n", "n_outputs = 10" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "tf.reset_default_graph()\n", "\n", "X = tf.placeholder(tf.float32, shape=(None, n_inputs), name=\"X\")\n", "y = tf.placeholder(tf.int64, shape=(None), name=\"y\") " ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [], "source": [ "with tf.name_scope(\"dnn\"):\n", " hidden1 = tf.layers.dense(X, n_hidden1, name=\"hidden1\",\n", " activation=tf.nn.relu)\n", " hidden2 = tf.layers.dense(hidden1, n_hidden2, name=\"hidden2\",\n", " activation=tf.nn.relu)\n", " logits = tf.layers.dense(hidden2, n_outputs, name=\"outputs\")" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "with tf.name_scope(\"loss\"):\n", " xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)\n", " loss = tf.reduce_mean(xentropy, name=\"loss\")\n", " loss_summary = tf.summary.scalar('log_loss', loss)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "learning_rate = 0.01\n", "\n", "with tf.name_scope(\"train\"):\n", " optimizer = tf.train.GradientDescentOptimizer(learning_rate)\n", " training_op = optimizer.minimize(loss)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "with tf.name_scope(\"eval\"):\n", " correct = tf.nn.in_top_k(logits, y, 1)\n", " accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))\n", " accuracy_summary = tf.summary.scalar('accuracy', accuracy)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "init = tf.global_variables_initializer()\n", "saver = tf.train.Saver()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we need to define the directory to write the TensorBoard logs to:" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from datetime import datetime\n", "\n", "def log_dir(prefix=\"\"):\n", " now = datetime.utcnow().strftime(\"%Y%m%d%H%M%S\")\n", " root_logdir = \"tf_logs\"\n", " if prefix:\n", " prefix += \"-\"\n", " name = prefix + \"run-\" + now\n", " return \"{}/{}/\".format(root_logdir, name)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": true }, "outputs": [], "source": [ "logdir = log_dir(\"mnist_dnn\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can create the `FileWriter` that we will use to write the TensorBoard logs:" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": true }, "outputs": [], "source": [ "file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Hey! Why don't we implement early stopping? For this, we are going to need a validation set. Luckily, the dataset returned by TensorFlow's `input_data()` function (see above) is already split into a training set (60,000 instances, already shuffled for us), a validation set (5,000 instances) and a test set (5,000 instances). So we can easily define `X_valid` and `y_valid`:" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [], "source": [ "X_valid = mnist.validation.images\n", "y_valid = mnist.validation.labels" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": true }, "outputs": [], "source": [ "m, n = X_train.shape" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [], "source": [ "n_epochs = 10001\n", "batch_size = 50\n", "n_batches = int(np.ceil(m / batch_size))\n", "\n", "checkpoint_path = \"/tmp/my_deep_mnist_model.ckpt\"\n", "checkpoint_epoch_path = checkpoint_path + \".epoch\"\n", "final_model_path = \"./my_deep_mnist_model\"\n", "\n", "best_loss = np.infty\n", "epochs_without_progress = 0\n", "max_epochs_without_progress = 50\n", "\n", "with tf.Session() as sess:\n", " if os.path.isfile(checkpoint_epoch_path):\n", " # if the checkpoint file exists, restore the model and load the epoch number\n", " with open(checkpoint_epoch_path, \"rb\") as f:\n", " start_epoch = int(f.read())\n", " print(\"Training was interrupted. Continuing at epoch\", start_epoch)\n", " saver.restore(sess, checkpoint_path)\n", " else:\n", " start_epoch = 0\n", " sess.run(init)\n", "\n", " for epoch in range(start_epoch, n_epochs):\n", " for iteration in range(mnist.train.num_examples // batch_size):\n", " X_batch, y_batch = mnist.train.next_batch(batch_size)\n", " sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n", " accuracy_val, loss_val, accuracy_summary_str, loss_summary_str = sess.run([accuracy, loss, accuracy_summary, loss_summary], feed_dict={X: X_valid, y: y_valid})\n", " file_writer.add_summary(accuracy_summary_str, epoch)\n", " file_writer.add_summary(loss_summary_str, epoch)\n", " if epoch % 5 == 0:\n", " print(\"Epoch:\", epoch,\n", " \"\\tValidation accuracy: {:.3f}%\".format(accuracy_val * 100),\n", " \"\\tLoss: {:.5f}\".format(loss_val))\n", " saver.save(sess, checkpoint_path)\n", " with open(checkpoint_epoch_path, \"wb\") as f:\n", " f.write(b\"%d\" % (epoch + 1))\n", " if loss_val < best_loss:\n", " saver.save(sess, final_model_path)\n", " best_loss = loss_val\n", " else:\n", " epochs_without_progress += 5\n", " if epochs_without_progress > max_epochs_without_progress:\n", " print(\"Early stopping\")\n", " break" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [], "source": [ "os.remove(checkpoint_epoch_path)" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with tf.Session() as sess:\n", " saver.restore(sess, final_model_path)\n", " accuracy_val = accuracy.eval(feed_dict={X: X_test, y: y_test})" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false }, "outputs": [], "source": [ "accuracy_val" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.3" }, "nav_menu": { "height": "264px", "width": "369px" }, "toc": { "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 6, "toc_cell": false, "toc_section_display": "block", "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 0 }