handson-ml/requirements.txt

96 lines
2.6 KiB
Plaintext

# TensorFlow is much easier to install using Anaconda, especially
# on Windows or when using a GPU. Please see the installation
# instructions in INSTALL.md
##### Core scientific packages
jupyterlab~=3.2.0
matplotlib~=3.5.0
numpy~=1.22.0
pandas~=1.4.0
scipy~=1.8.0
##### Machine Learning packages
scikit-learn~=1.0.2
# Optional: the XGBoost library is only used in chapter 7
xgboost~=1.5.0
# Optional: the transformers library is only used in chapter 16
transformers~=4.16.2
##### TensorFlow-related packages
# If you have a TF-compatible GPU and you want to enable GPU support, then
# replace tensorflow-serving-api with tensorflow-serving-api-gpu.
# Your GPU must have CUDA Compute Capability 3.5 or higher support, and
# you must install CUDA, cuDNN and more: see tensorflow.org for the detailed
# installation instructions.
tensorflow~=2.8.0
# Optional: the TF Serving API library is just needed for chapter 18.
tensorflow-serving-api~=2.8.0 # or tensorflow-serving-api-gpu if gpu
tensorboard~=2.8.0
tensorboard-plugin-profile~=2.5.0
tensorflow-datasets~=4.5.2
tensorflow-hub~=0.12.0
# Used in chapter 10 and 19 for hyperparameter tuning
keras-tuner~=1.1.2
# Optional: used in chapters 11 & 16 (for AdamW & seq2seq)
tensorflow-addons~=0.16.1
##### Reinforcement Learning library (chapter 18)
# There are a few dependencies you need to install first, check out:
# https://github.com/openai/gym#installing-everything
gym[Box2D,atari,accept-rom-license]~=0.21.0
# WARNING: on Windows, installing Box2D this way requires:
# * Swig: http://www.swig.org/download.html
# * Microsoft C++ Build Tools:
# https://visualstudio.microsoft.com/visual-cpp-build-tools/
# It's much easier to use Anaconda instead.
##### Image manipulation
Pillow~=9.0.0
graphviz~=0.19.1
pyglet~=1.5.21
#pyvirtualdisplay # needed in chapter 18, if on a headless server
# (i.e., without screen, e.g., Colab or VM)
##### Google Cloud Platform - used only in chapter 19
google-cloud-aiplatform~=1.12.0
google-cloud-storage~=2.2.1
##### Additional utilities
# Efficient jobs (caching, parallelism, persistence)
joblib~=1.1.0
# Easy http requests
requests~=2.27.0
# Nice utility to diff Jupyter Notebooks.
nbdime~=3.1.0
# May be useful with Pandas for complex "where" clauses (e.g., Pandas
# tutorial).
numexpr~=2.8.0
# Optional: these libraries can be useful in chapter 3, exercise 4.
nltk~=3.6.5
urlextract~=1.5.0
# Optional: these libraries are only used in chapter 16
ftfy~=5.5.0
# Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook
# support
tqdm~=4.62.3
ipywidgets~=7.6.5