733 lines
21 KiB
Plaintext
733 lines
21 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"**Chapter 6 – Decision Trees**"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"_This notebook contains all the sample code and solutions to the exercises in chapter 6._"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Setup"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Python ≥3.5 is required\n",
|
||
"import sys\n",
|
||
"assert sys.version_info >= (3, 5)\n",
|
||
"\n",
|
||
"# Common imports\n",
|
||
"import numpy as np\n",
|
||
"import os\n",
|
||
"\n",
|
||
"# to make this notebook's output stable across runs\n",
|
||
"np.random.seed(42)\n",
|
||
"\n",
|
||
"# To plot pretty figures\n",
|
||
"%matplotlib inline\n",
|
||
"import matplotlib as mpl\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"mpl.rc('axes', labelsize=14)\n",
|
||
"mpl.rc('xtick', labelsize=12)\n",
|
||
"mpl.rc('ytick', labelsize=12)\n",
|
||
"\n",
|
||
"# Where to save the figures\n",
|
||
"PROJECT_ROOT_DIR = \".\"\n",
|
||
"CHAPTER_ID = \"decision_trees\"\n",
|
||
"\n",
|
||
"def image_path(fig_id):\n",
|
||
" return os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id)\n",
|
||
"\n",
|
||
"def save_fig(fig_id, tight_layout=True):\n",
|
||
" print(\"Saving figure\", fig_id)\n",
|
||
" if tight_layout:\n",
|
||
" plt.tight_layout()\n",
|
||
" plt.savefig(image_path(fig_id) + \".png\", format='png', dpi=300)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Training and visualizing"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from sklearn.datasets import load_iris\n",
|
||
"from sklearn.tree import DecisionTreeClassifier\n",
|
||
"\n",
|
||
"iris = load_iris()\n",
|
||
"X = iris.data[:, 2:] # petal length and width\n",
|
||
"y = iris.target\n",
|
||
"\n",
|
||
"tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42)\n",
|
||
"tree_clf.fit(X, y)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from sklearn.tree import export_graphviz\n",
|
||
"\n",
|
||
"export_graphviz(\n",
|
||
" tree_clf,\n",
|
||
" out_file=image_path(\"iris_tree.dot\"),\n",
|
||
" feature_names=iris.feature_names[2:],\n",
|
||
" class_names=iris.target_names,\n",
|
||
" rounded=True,\n",
|
||
" filled=True\n",
|
||
" )"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from matplotlib.colors import ListedColormap\n",
|
||
"\n",
|
||
"def plot_decision_boundary(clf, X, y, axes=[0, 7.5, 0, 3], iris=True, legend=False, plot_training=True):\n",
|
||
" x1s = np.linspace(axes[0], axes[1], 100)\n",
|
||
" x2s = np.linspace(axes[2], axes[3], 100)\n",
|
||
" x1, x2 = np.meshgrid(x1s, x2s)\n",
|
||
" X_new = np.c_[x1.ravel(), x2.ravel()]\n",
|
||
" y_pred = clf.predict(X_new).reshape(x1.shape)\n",
|
||
" custom_cmap = ListedColormap(['#fafab0','#9898ff','#a0faa0'])\n",
|
||
" plt.contourf(x1, x2, y_pred, alpha=0.3, cmap=custom_cmap)\n",
|
||
" if not iris:\n",
|
||
" custom_cmap2 = ListedColormap(['#7d7d58','#4c4c7f','#507d50'])\n",
|
||
" plt.contour(x1, x2, y_pred, cmap=custom_cmap2, alpha=0.8)\n",
|
||
" if plot_training:\n",
|
||
" plt.plot(X[:, 0][y==0], X[:, 1][y==0], \"yo\", label=\"Iris-Setosa\")\n",
|
||
" plt.plot(X[:, 0][y==1], X[:, 1][y==1], \"bs\", label=\"Iris-Versicolor\")\n",
|
||
" plt.plot(X[:, 0][y==2], X[:, 1][y==2], \"g^\", label=\"Iris-Virginica\")\n",
|
||
" plt.axis(axes)\n",
|
||
" if iris:\n",
|
||
" plt.xlabel(\"Petal length\", fontsize=14)\n",
|
||
" plt.ylabel(\"Petal width\", fontsize=14)\n",
|
||
" else:\n",
|
||
" plt.xlabel(r\"$x_1$\", fontsize=18)\n",
|
||
" plt.ylabel(r\"$x_2$\", fontsize=18, rotation=0)\n",
|
||
" if legend:\n",
|
||
" plt.legend(loc=\"lower right\", fontsize=14)\n",
|
||
"\n",
|
||
"plt.figure(figsize=(8, 4))\n",
|
||
"plot_decision_boundary(tree_clf, X, y)\n",
|
||
"plt.plot([2.45, 2.45], [0, 3], \"k-\", linewidth=2)\n",
|
||
"plt.plot([2.45, 7.5], [1.75, 1.75], \"k--\", linewidth=2)\n",
|
||
"plt.plot([4.95, 4.95], [0, 1.75], \"k:\", linewidth=2)\n",
|
||
"plt.plot([4.85, 4.85], [1.75, 3], \"k:\", linewidth=2)\n",
|
||
"plt.text(1.40, 1.0, \"Depth=0\", fontsize=15)\n",
|
||
"plt.text(3.2, 1.80, \"Depth=1\", fontsize=13)\n",
|
||
"plt.text(4.05, 0.5, \"(Depth=2)\", fontsize=11)\n",
|
||
"\n",
|
||
"save_fig(\"decision_tree_decision_boundaries_plot\")\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Predicting classes and class probabilities"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"tree_clf.predict_proba([[5, 1.5]])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"tree_clf.predict([[5, 1.5]])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Sensitivity to training set details"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"X[(X[:, 1]==X[:, 1][y==1].max()) & (y==1)] # widest Iris-Versicolor flower"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"not_widest_versicolor = (X[:, 1]!=1.8) | (y==2)\n",
|
||
"X_tweaked = X[not_widest_versicolor]\n",
|
||
"y_tweaked = y[not_widest_versicolor]\n",
|
||
"\n",
|
||
"tree_clf_tweaked = DecisionTreeClassifier(max_depth=2, random_state=40)\n",
|
||
"tree_clf_tweaked.fit(X_tweaked, y_tweaked)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"plt.figure(figsize=(8, 4))\n",
|
||
"plot_decision_boundary(tree_clf_tweaked, X_tweaked, y_tweaked, legend=False)\n",
|
||
"plt.plot([0, 7.5], [0.8, 0.8], \"k-\", linewidth=2)\n",
|
||
"plt.plot([0, 7.5], [1.75, 1.75], \"k--\", linewidth=2)\n",
|
||
"plt.text(1.0, 0.9, \"Depth=0\", fontsize=15)\n",
|
||
"plt.text(1.0, 1.80, \"Depth=1\", fontsize=13)\n",
|
||
"\n",
|
||
"save_fig(\"decision_tree_instability_plot\")\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from sklearn.datasets import make_moons\n",
|
||
"Xm, ym = make_moons(n_samples=100, noise=0.25, random_state=53)\n",
|
||
"\n",
|
||
"deep_tree_clf1 = DecisionTreeClassifier(random_state=42)\n",
|
||
"deep_tree_clf2 = DecisionTreeClassifier(min_samples_leaf=4, random_state=42)\n",
|
||
"deep_tree_clf1.fit(Xm, ym)\n",
|
||
"deep_tree_clf2.fit(Xm, ym)\n",
|
||
"\n",
|
||
"plt.figure(figsize=(11, 4))\n",
|
||
"plt.subplot(121)\n",
|
||
"plot_decision_boundary(deep_tree_clf1, Xm, ym, axes=[-1.5, 2.5, -1, 1.5], iris=False)\n",
|
||
"plt.title(\"No restrictions\", fontsize=16)\n",
|
||
"plt.subplot(122)\n",
|
||
"plot_decision_boundary(deep_tree_clf2, Xm, ym, axes=[-1.5, 2.5, -1, 1.5], iris=False)\n",
|
||
"plt.title(\"min_samples_leaf = {}\".format(deep_tree_clf2.min_samples_leaf), fontsize=14)\n",
|
||
"\n",
|
||
"save_fig(\"min_samples_leaf_plot\")\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"angle = np.pi / 180 * 20\n",
|
||
"rotation_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])\n",
|
||
"Xr = X.dot(rotation_matrix)\n",
|
||
"\n",
|
||
"tree_clf_r = DecisionTreeClassifier(random_state=42)\n",
|
||
"tree_clf_r.fit(Xr, y)\n",
|
||
"\n",
|
||
"plt.figure(figsize=(8, 3))\n",
|
||
"plot_decision_boundary(tree_clf_r, Xr, y, axes=[0.5, 7.5, -1.0, 1], iris=False)\n",
|
||
"\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"np.random.seed(6)\n",
|
||
"Xs = np.random.rand(100, 2) - 0.5\n",
|
||
"ys = (Xs[:, 0] > 0).astype(np.float32) * 2\n",
|
||
"\n",
|
||
"angle = np.pi / 4\n",
|
||
"rotation_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])\n",
|
||
"Xsr = Xs.dot(rotation_matrix)\n",
|
||
"\n",
|
||
"tree_clf_s = DecisionTreeClassifier(random_state=42)\n",
|
||
"tree_clf_s.fit(Xs, ys)\n",
|
||
"tree_clf_sr = DecisionTreeClassifier(random_state=42)\n",
|
||
"tree_clf_sr.fit(Xsr, ys)\n",
|
||
"\n",
|
||
"plt.figure(figsize=(11, 4))\n",
|
||
"plt.subplot(121)\n",
|
||
"plot_decision_boundary(tree_clf_s, Xs, ys, axes=[-0.7, 0.7, -0.7, 0.7], iris=False)\n",
|
||
"plt.subplot(122)\n",
|
||
"plot_decision_boundary(tree_clf_sr, Xsr, ys, axes=[-0.7, 0.7, -0.7, 0.7], iris=False)\n",
|
||
"\n",
|
||
"save_fig(\"sensitivity_to_rotation_plot\")\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Regression trees"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Quadratic training set + noise\n",
|
||
"np.random.seed(42)\n",
|
||
"m = 200\n",
|
||
"X = np.random.rand(m, 1)\n",
|
||
"y = 4 * (X - 0.5) ** 2\n",
|
||
"y = y + np.random.randn(m, 1) / 10"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from sklearn.tree import DecisionTreeRegressor\n",
|
||
"\n",
|
||
"tree_reg = DecisionTreeRegressor(max_depth=2, random_state=42)\n",
|
||
"tree_reg.fit(X, y)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 15,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from sklearn.tree import DecisionTreeRegressor\n",
|
||
"\n",
|
||
"tree_reg1 = DecisionTreeRegressor(random_state=42, max_depth=2)\n",
|
||
"tree_reg2 = DecisionTreeRegressor(random_state=42, max_depth=3)\n",
|
||
"tree_reg1.fit(X, y)\n",
|
||
"tree_reg2.fit(X, y)\n",
|
||
"\n",
|
||
"def plot_regression_predictions(tree_reg, X, y, axes=[0, 1, -0.2, 1], ylabel=\"$y$\"):\n",
|
||
" x1 = np.linspace(axes[0], axes[1], 500).reshape(-1, 1)\n",
|
||
" y_pred = tree_reg.predict(x1)\n",
|
||
" plt.axis(axes)\n",
|
||
" plt.xlabel(\"$x_1$\", fontsize=18)\n",
|
||
" if ylabel:\n",
|
||
" plt.ylabel(ylabel, fontsize=18, rotation=0)\n",
|
||
" plt.plot(X, y, \"b.\")\n",
|
||
" plt.plot(x1, y_pred, \"r.-\", linewidth=2, label=r\"$\\hat{y}$\")\n",
|
||
"\n",
|
||
"plt.figure(figsize=(11, 4))\n",
|
||
"plt.subplot(121)\n",
|
||
"plot_regression_predictions(tree_reg1, X, y)\n",
|
||
"for split, style in ((0.1973, \"k-\"), (0.0917, \"k--\"), (0.7718, \"k--\")):\n",
|
||
" plt.plot([split, split], [-0.2, 1], style, linewidth=2)\n",
|
||
"plt.text(0.21, 0.65, \"Depth=0\", fontsize=15)\n",
|
||
"plt.text(0.01, 0.2, \"Depth=1\", fontsize=13)\n",
|
||
"plt.text(0.65, 0.8, \"Depth=1\", fontsize=13)\n",
|
||
"plt.legend(loc=\"upper center\", fontsize=18)\n",
|
||
"plt.title(\"max_depth=2\", fontsize=14)\n",
|
||
"\n",
|
||
"plt.subplot(122)\n",
|
||
"plot_regression_predictions(tree_reg2, X, y, ylabel=None)\n",
|
||
"for split, style in ((0.1973, \"k-\"), (0.0917, \"k--\"), (0.7718, \"k--\")):\n",
|
||
" plt.plot([split, split], [-0.2, 1], style, linewidth=2)\n",
|
||
"for split in (0.0458, 0.1298, 0.2873, 0.9040):\n",
|
||
" plt.plot([split, split], [-0.2, 1], \"k:\", linewidth=1)\n",
|
||
"plt.text(0.3, 0.5, \"Depth=2\", fontsize=13)\n",
|
||
"plt.title(\"max_depth=3\", fontsize=14)\n",
|
||
"\n",
|
||
"save_fig(\"tree_regression_plot\")\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 16,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"export_graphviz(\n",
|
||
" tree_reg1,\n",
|
||
" out_file=image_path(\"regression_tree.dot\"),\n",
|
||
" feature_names=[\"x1\"],\n",
|
||
" rounded=True,\n",
|
||
" filled=True\n",
|
||
" )"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 17,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"tree_reg1 = DecisionTreeRegressor(random_state=42)\n",
|
||
"tree_reg2 = DecisionTreeRegressor(random_state=42, min_samples_leaf=10)\n",
|
||
"tree_reg1.fit(X, y)\n",
|
||
"tree_reg2.fit(X, y)\n",
|
||
"\n",
|
||
"x1 = np.linspace(0, 1, 500).reshape(-1, 1)\n",
|
||
"y_pred1 = tree_reg1.predict(x1)\n",
|
||
"y_pred2 = tree_reg2.predict(x1)\n",
|
||
"\n",
|
||
"plt.figure(figsize=(11, 4))\n",
|
||
"\n",
|
||
"plt.subplot(121)\n",
|
||
"plt.plot(X, y, \"b.\")\n",
|
||
"plt.plot(x1, y_pred1, \"r.-\", linewidth=2, label=r\"$\\hat{y}$\")\n",
|
||
"plt.axis([0, 1, -0.2, 1.1])\n",
|
||
"plt.xlabel(\"$x_1$\", fontsize=18)\n",
|
||
"plt.ylabel(\"$y$\", fontsize=18, rotation=0)\n",
|
||
"plt.legend(loc=\"upper center\", fontsize=18)\n",
|
||
"plt.title(\"No restrictions\", fontsize=14)\n",
|
||
"\n",
|
||
"plt.subplot(122)\n",
|
||
"plt.plot(X, y, \"b.\")\n",
|
||
"plt.plot(x1, y_pred2, \"r.-\", linewidth=2, label=r\"$\\hat{y}$\")\n",
|
||
"plt.axis([0, 1, -0.2, 1.1])\n",
|
||
"plt.xlabel(\"$x_1$\", fontsize=18)\n",
|
||
"plt.title(\"min_samples_leaf={}\".format(tree_reg2.min_samples_leaf), fontsize=14)\n",
|
||
"\n",
|
||
"save_fig(\"tree_regression_regularization_plot\")\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"collapsed": true
|
||
},
|
||
"source": [
|
||
"# Exercise solutions"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 1. to 6."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"See appendix A."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"collapsed": true
|
||
},
|
||
"source": [
|
||
"## 7."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"_Exercise: train and fine-tune a Decision Tree for the moons dataset._"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"a. Generate a moons dataset using `make_moons(n_samples=10000, noise=0.4)`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Adding `random_state=42` to make this notebook's output constant:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 18,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from sklearn.datasets import make_moons\n",
|
||
"\n",
|
||
"X, y = make_moons(n_samples=10000, noise=0.4, random_state=42)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"b. Split it into a training set and a test set using `train_test_split()`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from sklearn.model_selection import train_test_split\n",
|
||
"\n",
|
||
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"c. Use grid search with cross-validation (with the help of the `GridSearchCV` class) to find good hyperparameter values for a `DecisionTreeClassifier`. Hint: try various values for `max_leaf_nodes`."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from sklearn.model_selection import GridSearchCV\n",
|
||
"\n",
|
||
"params = {'max_leaf_nodes': list(range(2, 100)), 'min_samples_split': [2, 3, 4]}\n",
|
||
"grid_search_cv = GridSearchCV(DecisionTreeClassifier(random_state=42), params, n_jobs=-1, verbose=1, cv=3)\n",
|
||
"\n",
|
||
"grid_search_cv.fit(X_train, y_train)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 21,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"grid_search_cv.best_estimator_"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"d. Train it on the full training set using these hyperparameters, and measure your model's performance on the test set. You should get roughly 85% to 87% accuracy."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"By default, `GridSearchCV` trains the best model found on the whole training set (you can change this by setting `refit=False`), so we don't need to do it again. We can simply evaluate the model's accuracy:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from sklearn.metrics import accuracy_score\n",
|
||
"\n",
|
||
"y_pred = grid_search_cv.predict(X_test)\n",
|
||
"accuracy_score(y_test, y_pred)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 8."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"_Exercise: Grow a forest._"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"a. Continuing the previous exercise, generate 1,000 subsets of the training set, each containing 100 instances selected randomly. Hint: you can use Scikit-Learn's `ShuffleSplit` class for this."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 23,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from sklearn.model_selection import ShuffleSplit\n",
|
||
"\n",
|
||
"n_trees = 1000\n",
|
||
"n_instances = 100\n",
|
||
"\n",
|
||
"mini_sets = []\n",
|
||
"\n",
|
||
"rs = ShuffleSplit(n_splits=n_trees, test_size=len(X_train) - n_instances, random_state=42)\n",
|
||
"for mini_train_index, mini_test_index in rs.split(X_train):\n",
|
||
" X_mini_train = X_train[mini_train_index]\n",
|
||
" y_mini_train = y_train[mini_train_index]\n",
|
||
" mini_sets.append((X_mini_train, y_mini_train))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"b. Train one Decision Tree on each subset, using the best hyperparameter values found above. Evaluate these 1,000 Decision Trees on the test set. Since they were trained on smaller sets, these Decision Trees will likely perform worse than the first Decision Tree, achieving only about 80% accuracy."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 24,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from sklearn.base import clone\n",
|
||
"\n",
|
||
"forest = [clone(grid_search_cv.best_estimator_) for _ in range(n_trees)]\n",
|
||
"\n",
|
||
"accuracy_scores = []\n",
|
||
"\n",
|
||
"for tree, (X_mini_train, y_mini_train) in zip(forest, mini_sets):\n",
|
||
" tree.fit(X_mini_train, y_mini_train)\n",
|
||
" \n",
|
||
" y_pred = tree.predict(X_test)\n",
|
||
" accuracy_scores.append(accuracy_score(y_test, y_pred))\n",
|
||
"\n",
|
||
"np.mean(accuracy_scores)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"c. Now comes the magic. For each test set instance, generate the predictions of the 1,000 Decision Trees, and keep only the most frequent prediction (you can use SciPy's `mode()` function for this). This gives you _majority-vote predictions_ over the test set."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 25,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"Y_pred = np.empty([n_trees, len(X_test)], dtype=np.uint8)\n",
|
||
"\n",
|
||
"for tree_index, tree in enumerate(forest):\n",
|
||
" Y_pred[tree_index] = tree.predict(X_test)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 26,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from scipy.stats import mode\n",
|
||
"\n",
|
||
"y_pred_majority_votes, n_votes = mode(Y_pred, axis=0)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"d. Evaluate these predictions on the test set: you should obtain a slightly higher accuracy than your first model (about 0.5 to 1.5% higher). Congratulations, you have trained a Random Forest classifier!"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 27,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"accuracy_score(y_test, y_pred_majority_votes.reshape([-1]))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 - tf2",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.6.8"
|
||
},
|
||
"nav_menu": {
|
||
"height": "309px",
|
||
"width": "468px"
|
||
},
|
||
"toc": {
|
||
"navigate_menu": true,
|
||
"number_sections": true,
|
||
"sideBar": true,
|
||
"threshold": 6,
|
||
"toc_cell": false,
|
||
"toc_section_display": "block",
|
||
"toc_window_display": false
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 1
|
||
}
|