293 lines
12 KiB
Python
293 lines
12 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for nets.inception_v1."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from nets import inception
|
|
|
|
slim = tf.contrib.slim
|
|
|
|
|
|
class InceptionV3Test(tf.test.TestCase):
|
|
|
|
def testBuildClassificationNetwork(self):
|
|
batch_size = 5
|
|
height, width = 299, 299
|
|
num_classes = 1000
|
|
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
logits, end_points = inception.inception_v3(inputs, num_classes)
|
|
self.assertTrue(logits.op.name.startswith('InceptionV3/Logits'))
|
|
self.assertListEqual(logits.get_shape().as_list(),
|
|
[batch_size, num_classes])
|
|
self.assertTrue('Predictions' in end_points)
|
|
self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
|
|
[batch_size, num_classes])
|
|
|
|
def testBuildBaseNetwork(self):
|
|
batch_size = 5
|
|
height, width = 299, 299
|
|
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
final_endpoint, end_points = inception.inception_v3_base(inputs)
|
|
self.assertTrue(final_endpoint.op.name.startswith(
|
|
'InceptionV3/Mixed_7c'))
|
|
self.assertListEqual(final_endpoint.get_shape().as_list(),
|
|
[batch_size, 8, 8, 2048])
|
|
expected_endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
|
|
'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
|
|
'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
|
|
'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
|
|
'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c']
|
|
self.assertItemsEqual(end_points.keys(), expected_endpoints)
|
|
|
|
def testBuildOnlyUptoFinalEndpoint(self):
|
|
batch_size = 5
|
|
height, width = 299, 299
|
|
endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
|
|
'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
|
|
'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
|
|
'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
|
|
'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c']
|
|
|
|
for index, endpoint in enumerate(endpoints):
|
|
with tf.Graph().as_default():
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
out_tensor, end_points = inception.inception_v3_base(
|
|
inputs, final_endpoint=endpoint)
|
|
self.assertTrue(out_tensor.op.name.startswith(
|
|
'InceptionV3/' + endpoint))
|
|
self.assertItemsEqual(endpoints[:index+1], end_points)
|
|
|
|
def testBuildAndCheckAllEndPointsUptoMixed7c(self):
|
|
batch_size = 5
|
|
height, width = 299, 299
|
|
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
_, end_points = inception.inception_v3_base(
|
|
inputs, final_endpoint='Mixed_7c')
|
|
endpoints_shapes = {'Conv2d_1a_3x3': [batch_size, 149, 149, 32],
|
|
'Conv2d_2a_3x3': [batch_size, 147, 147, 32],
|
|
'Conv2d_2b_3x3': [batch_size, 147, 147, 64],
|
|
'MaxPool_3a_3x3': [batch_size, 73, 73, 64],
|
|
'Conv2d_3b_1x1': [batch_size, 73, 73, 80],
|
|
'Conv2d_4a_3x3': [batch_size, 71, 71, 192],
|
|
'MaxPool_5a_3x3': [batch_size, 35, 35, 192],
|
|
'Mixed_5b': [batch_size, 35, 35, 256],
|
|
'Mixed_5c': [batch_size, 35, 35, 288],
|
|
'Mixed_5d': [batch_size, 35, 35, 288],
|
|
'Mixed_6a': [batch_size, 17, 17, 768],
|
|
'Mixed_6b': [batch_size, 17, 17, 768],
|
|
'Mixed_6c': [batch_size, 17, 17, 768],
|
|
'Mixed_6d': [batch_size, 17, 17, 768],
|
|
'Mixed_6e': [batch_size, 17, 17, 768],
|
|
'Mixed_7a': [batch_size, 8, 8, 1280],
|
|
'Mixed_7b': [batch_size, 8, 8, 2048],
|
|
'Mixed_7c': [batch_size, 8, 8, 2048]}
|
|
self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
|
|
for endpoint_name in endpoints_shapes:
|
|
expected_shape = endpoints_shapes[endpoint_name]
|
|
self.assertTrue(endpoint_name in end_points)
|
|
self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
|
|
expected_shape)
|
|
|
|
def testModelHasExpectedNumberOfParameters(self):
|
|
batch_size = 5
|
|
height, width = 299, 299
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
with slim.arg_scope(inception.inception_v3_arg_scope()):
|
|
inception.inception_v3_base(inputs)
|
|
total_params, _ = slim.model_analyzer.analyze_vars(
|
|
slim.get_model_variables())
|
|
self.assertAlmostEqual(21802784, total_params)
|
|
|
|
def testBuildEndPoints(self):
|
|
batch_size = 5
|
|
height, width = 299, 299
|
|
num_classes = 1000
|
|
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
_, end_points = inception.inception_v3(inputs, num_classes)
|
|
self.assertTrue('Logits' in end_points)
|
|
logits = end_points['Logits']
|
|
self.assertListEqual(logits.get_shape().as_list(),
|
|
[batch_size, num_classes])
|
|
self.assertTrue('AuxLogits' in end_points)
|
|
aux_logits = end_points['AuxLogits']
|
|
self.assertListEqual(aux_logits.get_shape().as_list(),
|
|
[batch_size, num_classes])
|
|
self.assertTrue('Mixed_7c' in end_points)
|
|
pre_pool = end_points['Mixed_7c']
|
|
self.assertListEqual(pre_pool.get_shape().as_list(),
|
|
[batch_size, 8, 8, 2048])
|
|
self.assertTrue('PreLogits' in end_points)
|
|
pre_logits = end_points['PreLogits']
|
|
self.assertListEqual(pre_logits.get_shape().as_list(),
|
|
[batch_size, 1, 1, 2048])
|
|
|
|
def testBuildEndPointsWithDepthMultiplierLessThanOne(self):
|
|
batch_size = 5
|
|
height, width = 299, 299
|
|
num_classes = 1000
|
|
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
_, end_points = inception.inception_v3(inputs, num_classes)
|
|
|
|
endpoint_keys = [key for key in end_points.keys()
|
|
if key.startswith('Mixed') or key.startswith('Conv')]
|
|
|
|
_, end_points_with_multiplier = inception.inception_v3(
|
|
inputs, num_classes, scope='depth_multiplied_net',
|
|
depth_multiplier=0.5)
|
|
|
|
for key in endpoint_keys:
|
|
original_depth = end_points[key].get_shape().as_list()[3]
|
|
new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
|
|
self.assertEqual(0.5 * original_depth, new_depth)
|
|
|
|
def testBuildEndPointsWithDepthMultiplierGreaterThanOne(self):
|
|
batch_size = 5
|
|
height, width = 299, 299
|
|
num_classes = 1000
|
|
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
_, end_points = inception.inception_v3(inputs, num_classes)
|
|
|
|
endpoint_keys = [key for key in end_points.keys()
|
|
if key.startswith('Mixed') or key.startswith('Conv')]
|
|
|
|
_, end_points_with_multiplier = inception.inception_v3(
|
|
inputs, num_classes, scope='depth_multiplied_net',
|
|
depth_multiplier=2.0)
|
|
|
|
for key in endpoint_keys:
|
|
original_depth = end_points[key].get_shape().as_list()[3]
|
|
new_depth = end_points_with_multiplier[key].get_shape().as_list()[3]
|
|
self.assertEqual(2.0 * original_depth, new_depth)
|
|
|
|
def testRaiseValueErrorWithInvalidDepthMultiplier(self):
|
|
batch_size = 5
|
|
height, width = 299, 299
|
|
num_classes = 1000
|
|
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
with self.assertRaises(ValueError):
|
|
_ = inception.inception_v3(inputs, num_classes, depth_multiplier=-0.1)
|
|
with self.assertRaises(ValueError):
|
|
_ = inception.inception_v3(inputs, num_classes, depth_multiplier=0.0)
|
|
|
|
def testHalfSizeImages(self):
|
|
batch_size = 5
|
|
height, width = 150, 150
|
|
num_classes = 1000
|
|
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
logits, end_points = inception.inception_v3(inputs, num_classes)
|
|
self.assertTrue(logits.op.name.startswith('InceptionV3/Logits'))
|
|
self.assertListEqual(logits.get_shape().as_list(),
|
|
[batch_size, num_classes])
|
|
pre_pool = end_points['Mixed_7c']
|
|
self.assertListEqual(pre_pool.get_shape().as_list(),
|
|
[batch_size, 3, 3, 2048])
|
|
|
|
def testUnknownImageShape(self):
|
|
tf.reset_default_graph()
|
|
batch_size = 2
|
|
height, width = 299, 299
|
|
num_classes = 1000
|
|
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
|
|
with self.test_session() as sess:
|
|
inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
|
|
logits, end_points = inception.inception_v3(inputs, num_classes)
|
|
self.assertListEqual(logits.get_shape().as_list(),
|
|
[batch_size, num_classes])
|
|
pre_pool = end_points['Mixed_7c']
|
|
feed_dict = {inputs: input_np}
|
|
tf.initialize_all_variables().run()
|
|
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
|
|
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 8, 2048])
|
|
|
|
def testUnknowBatchSize(self):
|
|
batch_size = 1
|
|
height, width = 299, 299
|
|
num_classes = 1000
|
|
|
|
inputs = tf.placeholder(tf.float32, (None, height, width, 3))
|
|
logits, _ = inception.inception_v3(inputs, num_classes)
|
|
self.assertTrue(logits.op.name.startswith('InceptionV3/Logits'))
|
|
self.assertListEqual(logits.get_shape().as_list(),
|
|
[None, num_classes])
|
|
images = tf.random_uniform((batch_size, height, width, 3))
|
|
|
|
with self.test_session() as sess:
|
|
sess.run(tf.initialize_all_variables())
|
|
output = sess.run(logits, {inputs: images.eval()})
|
|
self.assertEquals(output.shape, (batch_size, num_classes))
|
|
|
|
def testEvaluation(self):
|
|
batch_size = 2
|
|
height, width = 299, 299
|
|
num_classes = 1000
|
|
|
|
eval_inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
logits, _ = inception.inception_v3(eval_inputs, num_classes,
|
|
is_training=False)
|
|
predictions = tf.argmax(logits, 1)
|
|
|
|
with self.test_session() as sess:
|
|
sess.run(tf.initialize_all_variables())
|
|
output = sess.run(predictions)
|
|
self.assertEquals(output.shape, (batch_size,))
|
|
|
|
def testTrainEvalWithReuse(self):
|
|
train_batch_size = 5
|
|
eval_batch_size = 2
|
|
height, width = 150, 150
|
|
num_classes = 1000
|
|
|
|
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
|
|
inception.inception_v3(train_inputs, num_classes)
|
|
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
|
|
logits, _ = inception.inception_v3(eval_inputs, num_classes,
|
|
is_training=False, reuse=True)
|
|
predictions = tf.argmax(logits, 1)
|
|
|
|
with self.test_session() as sess:
|
|
sess.run(tf.initialize_all_variables())
|
|
output = sess.run(predictions)
|
|
self.assertEquals(output.shape, (eval_batch_size,))
|
|
|
|
def testLogitsNotSqueezed(self):
|
|
num_classes = 25
|
|
images = tf.random_uniform([1, 299, 299, 3])
|
|
logits, _ = inception.inception_v3(images,
|
|
num_classes=num_classes,
|
|
spatial_squeeze=False)
|
|
|
|
with self.test_session() as sess:
|
|
tf.initialize_all_variables().run()
|
|
logits_out = sess.run(logits)
|
|
self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
tf.test.main()
|