handson-ml/extra_gradient_descent_comp...

289 lines
8.4 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Comparison of Batch, Mini-Batch and Stochastic Gradient Descent"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook displays an animation comparing Batch, Mini-Batch and Stochastic Gradient Descent (introduced in Chapter 4). Thanks to [Daniel Ingram](https://github.com/daniel-s-ingram) who contributed this notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table align=\"left\">\n",
" <td>\n",
" <a href=\"https://colab.research.google.com/github/ageron/handson-ml3/blob/main/extra_gradient_descent_comparison.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>\n",
" </td>\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://kaggle.com/kernels/welcome?src=https://github.com/ageron/handson-ml3/blob/main/extra_gradient_descent_comparison.ipynb\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" /></a>\n",
" </td>\n",
"</table>"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib.animation import FuncAnimation\n",
"\n",
"matplotlib.rc('animation', html='jshtml')"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"m = 100\n",
"X = 2 * np.random.rand(m, 1)\n",
"X_b = np.c_[np.ones((m, 1)), X]\n",
"y = 4 + 3 * X + np.random.rand(m, 1)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def batch_gradient_descent():\n",
" n_iterations = 1000\n",
" learning_rate = 0.05\n",
" thetas = np.random.randn(2, 1)\n",
" thetas_path = [thetas]\n",
" for i in range(n_iterations):\n",
" gradients = 2 * X_b.T @ (X_b @ thetas - y) / m\n",
" thetas = thetas - learning_rate * gradients\n",
" thetas_path.append(thetas)\n",
"\n",
" return thetas_path"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def stochastic_gradient_descent():\n",
" n_epochs = 50\n",
" t0, t1 = 5, 50\n",
" thetas = np.random.randn(2, 1)\n",
" thetas_path = [thetas]\n",
" for epoch in range(n_epochs):\n",
" for i in range(m):\n",
" random_index = np.random.randint(m)\n",
" xi = X_b[random_index:random_index+1]\n",
" yi = y[random_index:random_index+1]\n",
" gradients = 2 * xi.T @ (xi @ thetas - yi)\n",
" eta = learning_schedule(epoch * m + i, t0, t1)\n",
" thetas = thetas - eta * gradients\n",
" thetas_path.append(thetas)\n",
"\n",
" return thetas_path"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def mini_batch_gradient_descent():\n",
" n_iterations = 50\n",
" minibatch_size = 20\n",
" t0, t1 = 200, 1000\n",
" thetas = np.random.randn(2, 1)\n",
" thetas_path = [thetas]\n",
" t = 0\n",
" for epoch in range(n_iterations):\n",
" shuffled_indices = np.random.permutation(m)\n",
" X_b_shuffled = X_b[shuffled_indices]\n",
" y_shuffled = y[shuffled_indices]\n",
" for i in range(0, m, minibatch_size):\n",
" t += 1\n",
" xi = X_b_shuffled[i : i + minibatch_size]\n",
" yi = y_shuffled[i : i + minibatch_size]\n",
" gradients = 2 * xi.T @ (xi @ thetas - yi) / minibatch_size\n",
" eta = learning_schedule(t, t0, t1)\n",
" thetas = thetas - eta * gradients\n",
" thetas_path.append(thetas)\n",
"\n",
" return thetas_path"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def compute_mse(theta):\n",
" return ((X_b @ theta - y) ** 2).sum() / m"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def learning_schedule(t, t0, t1):\n",
" return t0 / (t + t1)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"theta0, theta1 = np.meshgrid(np.arange(0, 5, 0.1), np.arange(0, 5, 0.1))\n",
"r, c = theta0.shape\n",
"cost_map = np.array([[0 for _ in range(c)] for _ in range(r)])\n",
"for i in range(r):\n",
" for j in range(c):\n",
" theta = np.array([theta0[i,j], theta1[i,j]])\n",
" cost_map[i,j] = compute_mse(theta)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"exact_solution = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ y\n",
"bgd_thetas = np.array(batch_gradient_descent())\n",
"sgd_thetas = np.array(stochastic_gradient_descent())\n",
"mbgd_thetas = np.array(mini_batch_gradient_descent())"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"bgd_len = len(bgd_thetas)\n",
"sgd_len = len(sgd_thetas)\n",
"mbgd_len = len(mbgd_thetas)\n",
"n_iter = min(bgd_len, sgd_len, mbgd_len)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure(figsize=(10, 5))\n",
"data_ax = fig.add_subplot(121)\n",
"cost_ax = fig.add_subplot(122)\n",
"\n",
"data_ax.plot(X, y, 'k.')\n",
"\n",
"cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*')\n",
"cost_ax.pcolor(theta0, theta1, cost_map, shading='auto')\n",
"\n",
"i = -1\n",
"[bgd_data_plot] = data_ax.plot(X, X_b @ bgd_thetas[i,:], 'r-')\n",
"[bgd_cost_plot] = cost_ax.plot(bgd_thetas[:i,0], bgd_thetas[:i,1], 'r--')\n",
"\n",
"[sgd_data_plot] = data_ax.plot(X, X_b @ sgd_thetas[i,:], 'g-')\n",
"[sgd_cost_plot] = cost_ax.plot(sgd_thetas[:i,0], sgd_thetas[:i,1], 'g--')\n",
"\n",
"[mbgd_data_plot] = data_ax.plot(X, X_b @ mbgd_thetas[i,:], 'b-')\n",
"[mbgd_cost_plot] = cost_ax.plot(mbgd_thetas[:i,0], mbgd_thetas[:i,1], 'b--')\n",
"\n",
"data_ax.set_xlim([0, 2])\n",
"data_ax.set_ylim([0, 15])\n",
"cost_ax.set_xlim([3, 5])\n",
"cost_ax.set_ylim([2, 5])\n",
"\n",
"data_ax.set_xlabel(r'$x_1$')\n",
"data_ax.set_ylabel(r'$y$', rotation=0)\n",
"cost_ax.set_xlabel(r'$\\theta_0$')\n",
"cost_ax.set_ylabel(r'$\\theta_1$')\n",
"\n",
"data_ax.legend(('Data', 'BGD', 'SGD', 'MBGD'), loc=\"upper left\")\n",
"cost_ax.legend(('Normal Equation', 'BGD', 'SGD', 'MBGD'), loc=\"upper left\")\n",
"\n",
"cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*')\n",
"cost_img = cost_ax.pcolor(theta0, theta1, cost_map, shading='auto')\n",
"fig.colorbar(cost_img)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"def animate(i):\n",
" bgd_data_plot.set_data(X, X_b @ bgd_thetas[i,:])\n",
" bgd_cost_plot.set_data(bgd_thetas[:i,0], bgd_thetas[:i,1])\n",
"\n",
" sgd_data_plot.set_data(X, X_b @ sgd_thetas[i,:])\n",
" sgd_cost_plot.set_data(sgd_thetas[:i,0], sgd_thetas[:i,1])\n",
"\n",
" mbgd_data_plot.set_data(X, X_b @ mbgd_thetas[i,:])\n",
" mbgd_cost_plot.set_data(mbgd_thetas[:i,0], mbgd_thetas[:i,1])"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"FuncAnimation(fig, animate, frames=n_iter // 3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}