handson-ml/09_up_and_running_with_tens...

1710 lines
46 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Chapter 9 Up and running with TensorFlow**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"_This notebook contains all the sample code and solutions to the exercices in chapter 9._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# To support both python 2 and python 3\n",
"from __future__ import division, print_function, unicode_literals\n",
"\n",
"# Common imports\n",
"import numpy as np\n",
"import numpy.random as rnd\n",
"import os\n",
"\n",
"# to make this notebook's output stable across runs\n",
"rnd.seed(42)\n",
"\n",
"# To plot pretty figures\n",
"%matplotlib inline\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"plt.rcParams['axes.labelsize'] = 14\n",
"plt.rcParams['xtick.labelsize'] = 12\n",
"plt.rcParams['ytick.labelsize'] = 12\n",
"\n",
"# Where to save the figures\n",
"PROJECT_ROOT_DIR = \".\"\n",
"CHAPTER_ID = \"tensorflow\"\n",
"\n",
"def save_fig(fig_id, tight_layout=True):\n",
" path = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id + \".png\")\n",
" print(\"Saving figure\", fig_id)\n",
" if tight_layout:\n",
" plt.tight_layout()\n",
" plt.savefig(path, format='png', dpi=300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Creating and running a graph"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import tensorflow as tf"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"x = tf.Variable(3, name=\"x\")\n",
"y = tf.Variable(4, name=\"y\")\n",
"f = x*x*y + y + 2\n",
"\n",
"f"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"sess = tf.Session()\n",
"sess.run(x.initializer)\n",
"sess.run(y.initializer)\n",
"print(sess.run(f))\n",
"sess.close()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" x.initializer.run()\n",
" y.initializer.run()\n",
" result = f.eval()\n",
"\n",
"result"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"init = tf.initialize_all_variables()\n",
"\n",
"with tf.Session():\n",
" init.run()\n",
" result = f.eval()\n",
"\n",
"result"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"init = tf.initialize_all_variables()\n",
"\n",
"sess = tf.InteractiveSession()\n",
"init.run()\n",
"result = f.eval()\n",
"sess.close()\n",
"\n",
"result"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Managing graphs"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"x1 = tf.Variable(1)\n",
"x1.graph is tf.get_default_graph()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"graph = tf.Graph()\n",
"with graph.as_default():\n",
" x2 = tf.Variable(2)\n",
"\n",
"x2.graph is tf.get_default_graph()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [],
"source": [
"x2.graph is graph"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"w = tf.constant(3)\n",
"x = w + 2\n",
"y = x + 5\n",
"z = x * 3\n",
"\n",
"with tf.Session() as sess:\n",
" print(y.eval()) # 10\n",
" print(z.eval()) # 15"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" y_val, z_val = sess.run([y, z])\n",
" print(y) # 10\n",
" print(z) # 15"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Linear Regression"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using the Normal Equation"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from sklearn.datasets import fetch_california_housing\n",
"\n",
"housing = fetch_california_housing()\n",
"m, n = housing.data.shape\n",
"housing_data_plus_bias = np.c_[np.ones((m, 1)), housing.data]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"X = tf.constant(housing_data_plus_bias, dtype=tf.float64, name=\"X\")\n",
"y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float64, name=\"y\")\n",
"XT = tf.transpose(X)\n",
"theta = tf.matmul(tf.matmul(tf.matrix_inverse(tf.matmul(XT, X)), XT), y)\n",
"\n",
"with tf.Session() as sess:\n",
" result = theta.eval()\n",
"\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Compare with pure NumPy"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X = housing_data_plus_bias\n",
"y = housing.target.reshape(-1, 1)\n",
"theta_numpy = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)\n",
"\n",
"print(theta_numpy)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Compare with Scikit-Learn"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from sklearn.linear_model import LinearRegression\n",
"lin_reg = LinearRegression()\n",
"lin_reg.fit(housing.data, housing.target.reshape(-1, 1))\n",
"\n",
"print(np.r_[lin_reg.intercept_.reshape(-1, 1), lin_reg.coef_.T])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using Batch Gradient Descent"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Gradient Descent requires scaling the feature vectors first. We could do this using TF, but let's just use Scikit-Learn for now."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.preprocessing import StandardScaler\n",
"scaler = StandardScaler()\n",
"scaled_housing_data = scaler.fit_transform(housing.data)\n",
"scaled_housing_data_plus_bias = np.c_[np.ones((m, 1)), scaled_housing_data]"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"print(scaled_housing_data_plus_bias.mean(axis=0))\n",
"print(scaled_housing_data_plus_bias.mean(axis=1))\n",
"print(scaled_housing_data_plus_bias.mean())\n",
"print(scaled_housing_data_plus_bias.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Manually computing the gradients"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_epochs = 1000\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name=\"X\")\n",
"y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name=\"y\")\n",
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\")\n",
"error = y_pred - y\n",
"mse = tf.reduce_mean(tf.square(error), name=\"mse\")\n",
"gradients = 2/m * tf.matmul(tf.transpose(X), error)\n",
"training_op = tf.assign(theta, theta - learning_rate * gradients)\n",
"\n",
"init = tf.initialize_all_variables()\n",
"\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" if epoch % 100 == 0:\n",
" print(\"Epoch\", epoch, \"MSE =\", mse.eval())\n",
" sess.run(training_op)\n",
" \n",
" best_theta = theta.eval()\n",
"\n",
"print(\"Best theta:\")\n",
"print(best_theta)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using autodiff\n",
"Same as above except for the `gradients = ...` line."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_epochs = 1000\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name=\"X\")\n",
"y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name=\"y\")\n",
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\")\n",
"error = y_pred - y\n",
"mse = tf.reduce_mean(tf.square(error), name=\"mse\")\n",
"gradients = tf.gradients(mse, [theta])[0]\n",
"training_op = tf.assign(theta, theta - learning_rate * gradients)\n",
"\n",
"init = tf.initialize_all_variables()\n",
"\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" if epoch % 100 == 0:\n",
" print(\"Epoch\", epoch, \"MSE =\", mse.eval())\n",
" sess.run(training_op)\n",
" \n",
" best_theta = theta.eval()\n",
"\n",
"print(\"Best theta:\")\n",
"print(best_theta)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using a `GradientDescentOptimizer`"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_epochs = 1000\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name=\"X\")\n",
"y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name=\"y\")\n",
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\")\n",
"error = y_pred - y\n",
"mse = tf.reduce_mean(tf.square(error), name=\"mse\")\n",
"optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(mse)\n",
"\n",
"init = tf.initialize_all_variables()\n",
"\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" if epoch % 100 == 0:\n",
" print(\"Epoch\", epoch, \"MSE =\", mse.eval())\n",
" sess.run(training_op)\n",
" \n",
" best_theta = theta.eval()\n",
"\n",
"print(\"Best theta:\")\n",
"print(best_theta)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using a momentum optimizer"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_epochs = 1000\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name=\"X\")\n",
"y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name=\"y\")\n",
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\")\n",
"error = y_pred - y\n",
"mse = tf.reduce_mean(tf.square(error), name=\"mse\")\n",
"optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.25)\n",
"training_op = optimizer.minimize(mse)\n",
"\n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" sess.run(training_op)\n",
" \n",
" best_theta = theta.eval()\n",
"\n",
"print(\"Best theta:\")\n",
"print(best_theta)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Feeding data to the training algorithm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Placeholder nodes"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
">>> tf.reset_default_graph()\n",
"\n",
">>> A = tf.placeholder(tf.float32, shape=(None, 3))\n",
">>> B = A + 5\n",
">>> with tf.Session() as sess:\n",
"... B_val_1 = B.eval(feed_dict={A: [[1, 2, 3]]})\n",
"... B_val_2 = B.eval(feed_dict={A: [[4, 5, 6], [7, 8, 9]]})\n",
"...\n",
">>> print(B_val_1)\n",
">>> print(B_val_2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mini-batch Gradient Descent"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_epochs = 1000\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, n + 1), name=\"X\")\n",
"y = tf.placeholder(tf.float32, shape=(None, 1), name=\"y\")\n",
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\")\n",
"error = y_pred - y\n",
"mse = tf.reduce_mean(tf.square(error), name=\"mse\")\n",
"optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(mse)\n",
"\n",
"init = tf.initialize_all_variables()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def fetch_batch(epoch, batch_index, batch_size):\n",
" rnd.seed(epoch * n_batches + batch_index)\n",
" indices = rnd.randint(m, size=batch_size)\n",
" X_batch = scaled_housing_data_plus_bias[indices]\n",
" y_batch = housing.target.reshape(-1, 1)[indices]\n",
" return X_batch, y_batch\n",
"\n",
"n_epochs = 10\n",
"batch_size = 100\n",
"n_batches = int(np.ceil(m / batch_size))\n",
"\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" for batch_index in range(n_batches):\n",
" X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size)\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
"\n",
" best_theta = theta.eval()\n",
" \n",
"print(\"Best theta:\")\n",
"print(best_theta)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Saving and restoring a model"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_epochs = 1000\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name=\"X\")\n",
"y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name=\"y\")\n",
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\")\n",
"error = y_pred - y\n",
"mse = tf.reduce_mean(tf.square(error), name=\"mse\")\n",
"optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(mse)\n",
"\n",
"init = tf.initialize_all_variables()\n",
"saver = tf.train.Saver()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" if epoch % 100 == 0:\n",
" print(\"Epoch\", epoch, \"MSE =\", mse.eval())\n",
" save_path = saver.save(sess, \"/tmp/my_model.ckpt\")\n",
" sess.run(training_op)\n",
" \n",
" best_theta = theta.eval()\n",
" save_path = saver.save(sess, \"my_model_final.ckpt\")\n",
"\n",
"print(\"Best theta:\")\n",
"print(best_theta)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Visualizing the graph\n",
"## inside Jupyter"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from IPython.display import clear_output, Image, display, HTML\n",
"\n",
"def strip_consts(graph_def, max_const_size=32):\n",
" \"\"\"Strip large constant values from graph_def.\"\"\"\n",
" strip_def = tf.GraphDef()\n",
" for n0 in graph_def.node:\n",
" n = strip_def.node.add() \n",
" n.MergeFrom(n0)\n",
" if n.op == 'Const':\n",
" tensor = n.attr['value'].tensor\n",
" size = len(tensor.tensor_content)\n",
" if size > max_const_size:\n",
" tensor.tensor_content = b\"<stripped %d bytes>\"%size\n",
" return strip_def\n",
"\n",
"def show_graph(graph_def, max_const_size=32):\n",
" \"\"\"Visualize TensorFlow graph.\"\"\"\n",
" if hasattr(graph_def, 'as_graph_def'):\n",
" graph_def = graph_def.as_graph_def()\n",
" strip_def = strip_consts(graph_def, max_const_size=max_const_size)\n",
" code = \"\"\"\n",
" <script>\n",
" function load() {{\n",
" document.getElementById(\"{id}\").pbtxt = {data};\n",
" }}\n",
" </script>\n",
" <link rel=\"import\" href=\"https://tensorboard.appspot.com/tf-graph-basic.build.html\" onload=load()>\n",
" <div style=\"height:600px\">\n",
" <tf-graph-basic id=\"{id}\"></tf-graph-basic>\n",
" </div>\n",
" \"\"\".format(data=repr(str(strip_def)), id='graph'+str(np.random.rand()))\n",
"\n",
" iframe = \"\"\"\n",
" <iframe seamless style=\"width:1200px;height:620px;border:0\" srcdoc=\"{}\"></iframe>\n",
" \"\"\".format(code.replace('\"', '&quot;'))\n",
" display(HTML(iframe))"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [],
"source": [
"show_graph(tf.get_default_graph())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using TensorBoard"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"from datetime import datetime\n",
"\n",
"now = datetime.utcnow().strftime(\"%Y%m%d%H%M%S\")\n",
"root_logdir = \"tf_logs\"\n",
"logdir = \"{}/run-{}/\".format(root_logdir, now)\n",
"\n",
"n_epochs = 1000\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, n + 1), name=\"X\")\n",
"y = tf.placeholder(tf.float32, shape=(None, 1), name=\"y\")\n",
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\")\n",
"error = y_pred - y\n",
"mse = tf.reduce_mean(tf.square(error), name=\"mse\")\n",
"optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(mse)\n",
"\n",
"init = tf.initialize_all_variables()\n",
"\n",
"mse_summary = tf.scalar_summary('MSE', mse)\n",
"summary_writer = tf.train.SummaryWriter(logdir, tf.get_default_graph())"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"n_epochs = 10\n",
"batch_size = 100\n",
"n_batches = int(np.ceil(m / batch_size))\n",
"\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" for batch_index in range(n_batches):\n",
" X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size)\n",
" if batch_index % 10 == 0:\n",
" summary_str = mse_summary.eval(feed_dict={X: X_batch, y: y_batch})\n",
" step = epoch * n_batches + batch_index\n",
" summary_writer.add_summary(summary_str, step)\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
"\n",
" best_theta = theta.eval()\n",
"\n",
"summary_writer.flush()\n",
"summary_writer.close()\n",
"print(\"Best theta:\")\n",
"print(best_theta)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Name scopes"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"now = datetime.utcnow().strftime(\"%Y%m%d%H%M%S\")\n",
"root_logdir = \"tf_logs\"\n",
"logdir = \"{}/run-{}/\".format(root_logdir, now)\n",
"\n",
"n_epochs = 1000\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, n + 1), name=\"X\")\n",
"y = tf.placeholder(tf.float32, shape=(None, 1), name=\"y\")\n",
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\")\n",
"with tf.name_scope('loss') as scope:\n",
" error = y_pred - y\n",
" mse = tf.reduce_mean(tf.square(error), name=\"mse\")\n",
"optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(mse)\n",
"\n",
"init = tf.initialize_all_variables()\n",
"\n",
"mse_summary = tf.scalar_summary('MSE', mse)\n",
"summary_writer = tf.train.SummaryWriter(logdir, tf.get_default_graph())"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"n_epochs = 10\n",
"batch_size = 100\n",
"n_batches = int(np.ceil(m / batch_size))\n",
"\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" for batch_index in range(n_batches):\n",
" X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size)\n",
" if batch_index % 10 == 0:\n",
" summary_str = mse_summary.eval(feed_dict={X: X_batch, y: y_batch})\n",
" step = epoch * n_batches + batch_index\n",
" summary_writer.add_summary(summary_str, step)\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
"\n",
" best_theta = theta.eval()\n",
"\n",
"summary_writer.flush()\n",
"summary_writer.close()\n",
"print(\"Best theta:\")\n",
"print(best_theta)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"print(error.op.name)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"print(mse.op.name)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"a1 = tf.Variable(0, name=\"a\") # name == \"a\"\n",
"a2 = tf.Variable(0, name=\"a\") # name == \"a_1\"\n",
"\n",
"with tf.name_scope(\"param\"): # name == \"param\"\n",
" a3 = tf.Variable(0, name=\"a\") # name == \"param/a\"\n",
"\n",
"with tf.name_scope(\"param\"): # name == \"param_1\"\n",
" a4 = tf.Variable(0, name=\"a\") # name == \"param_1/a\"\n",
"\n",
"for node in (a1, a2, a3, a4):\n",
" print(node.op.name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Modularity"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"An ugly flat code:"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_features = 3\n",
"X = tf.placeholder(tf.float32, shape=(None, n_features), name=\"X\")\n",
"\n",
"w1 = tf.Variable(tf.random_normal((n_features, 1)), name=\"weights1\")\n",
"w2 = tf.Variable(tf.random_normal((n_features, 1)), name=\"weights2\")\n",
"b1 = tf.Variable(0.0, name=\"bias1\")\n",
"b2 = tf.Variable(0.0, name=\"bias2\")\n",
"\n",
"linear1 = tf.add(tf.matmul(X, w1), b1, name=\"linear1\")\n",
"linear2 = tf.add(tf.matmul(X, w2), b2, name=\"linear2\")\n",
"\n",
"relu1 = tf.maximum(linear1, 0, name=\"relu1\")\n",
"relu2 = tf.maximum(linear1, 0, name=\"relu2\") # Oops, cut&paste error! Did you spot it?\n",
"\n",
"output = tf.add_n([relu1, relu2], name=\"output\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Much better, using a function to build the ReLUs:"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"def relu(X):\n",
" w_shape = int(X.get_shape()[1]), 1\n",
" w = tf.Variable(tf.random_normal(w_shape), name=\"weights\")\n",
" b = tf.Variable(0.0, name=\"bias\")\n",
" linear = tf.add(tf.matmul(X, w), b, name=\"linear\")\n",
" return tf.maximum(linear, 0, name=\"relu\")\n",
"\n",
"n_features = 3\n",
"X = tf.placeholder(tf.float32, shape=(None, n_features), name=\"X\")\n",
"relus = [relu(X) for i in range(5)]\n",
"output = tf.add_n(relus, name=\"output\")\n",
"summary_writer = tf.train.SummaryWriter(\"logs/relu1\", tf.get_default_graph())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Even better using name scopes:"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"def relu(X):\n",
" with tf.name_scope(\"relu\"):\n",
" w_shape = int(X.get_shape()[1]), 1\n",
" w = tf.Variable(tf.random_normal(w_shape), name=\"weights\")\n",
" b = tf.Variable(0.0, name=\"bias\")\n",
" linear = tf.add(tf.matmul(X, w), b, name=\"linear\")\n",
" return tf.maximum(linear, 0, name=\"max\")\n",
"\n",
"n_features = 3\n",
"X = tf.placeholder(tf.float32, shape=(None, n_features), name=\"X\")\n",
"relus = [relu(X) for i in range(5)]\n",
"output = tf.add_n(relus, name=\"output\")\n",
"\n",
"summary_writer = tf.train.SummaryWriter(\"logs/relu2\", tf.get_default_graph())"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"summary_writer.close()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sharing a `threshold` variable the classic way, by defining it outside of the `relu()` function then passing it as a parameter:"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"def relu(X, threshold):\n",
" with tf.name_scope(\"relu\"):\n",
" w_shape = int(X.get_shape()[1]), 1\n",
" w = tf.Variable(tf.random_normal(w_shape), name=\"weights\")\n",
" b = tf.Variable(0.0, name=\"bias\")\n",
" linear = tf.add(tf.matmul(X, w), b, name=\"linear\")\n",
" return tf.maximum(linear, threshold, name=\"max\")\n",
"\n",
"threshold = tf.Variable(0.0, name=\"threshold\")\n",
"X = tf.placeholder(tf.float32, shape=(None, n_features), name=\"X\")\n",
"relus = [relu(X, threshold) for i in range(5)]\n",
"output = tf.add_n(relus, name=\"output\")"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"def relu(X):\n",
" with tf.name_scope(\"relu\"):\n",
" if not hasattr(relu, \"threshold\"):\n",
" relu.threshold = tf.Variable(0.0, name=\"threshold\")\n",
" w_shape = int(X.get_shape()[1]), 1\n",
" w = tf.Variable(tf.random_normal(w_shape), name=\"weights\")\n",
" b = tf.Variable(0.0, name=\"bias\")\n",
" linear = tf.add(tf.matmul(X, w), b, name=\"linear\")\n",
" return tf.maximum(linear, relu.threshold, name=\"max\")\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, n_features), name=\"X\")\n",
"relus = [relu(X) for i in range(5)]\n",
"output = tf.add_n(relus, name=\"output\")"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"def relu(X):\n",
" with tf.variable_scope(\"relu\", reuse=True):\n",
" threshold = tf.get_variable(\"threshold\", shape=(), initializer=tf.constant_initializer(0.0))\n",
" w_shape = int(X.get_shape()[1]), 1\n",
" w = tf.Variable(tf.random_normal(w_shape), name=\"weights\")\n",
" b = tf.Variable(0.0, name=\"bias\")\n",
" linear = tf.add(tf.matmul(X, w), b, name=\"linear\")\n",
" return tf.maximum(linear, threshold, name=\"max\")\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, n_features), name=\"X\")\n",
"with tf.variable_scope(\"relu\"):\n",
" threshold = tf.get_variable(\"threshold\", shape=(), initializer=tf.constant_initializer(0.0))\n",
"relus = [relu(X) for i in range(5)]\n",
"output = tf.add_n(relus, name=\"output\")\n",
"\n",
"summary_writer = tf.train.SummaryWriter(\"logs/relu6\", tf.get_default_graph())\n",
"summary_writer.close()"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"def relu(X):\n",
" with tf.variable_scope(\"relu\"):\n",
" threshold = tf.get_variable(\"threshold\", shape=(), initializer=tf.constant_initializer(0.0))\n",
" w_shape = int(X.get_shape()[1]), 1\n",
" w = tf.Variable(tf.random_normal(w_shape), name=\"weights\")\n",
" b = tf.Variable(0.0, name=\"bias\")\n",
" linear = tf.add(tf.matmul(X, w), b, name=\"linear\")\n",
" return tf.maximum(linear, threshold, name=\"max\")\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, n_features), name=\"X\")\n",
"with tf.variable_scope(\"\", default_name=\"\") as scope:\n",
" first_relu = relu(X) # create the shared variable\n",
" scope.reuse_variables() # then reuse it\n",
" relus = [first_relu] + [relu(X) for i in range(4)]\n",
"output = tf.add_n(relus, name=\"output\")\n",
"\n",
"summary_writer = tf.train.SummaryWriter(\"logs/relu8\", tf.get_default_graph())\n",
"summary_writer.close()"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"with tf.variable_scope(\"param\"):\n",
" x = tf.get_variable(\"x\", shape=(), initializer=tf.constant_initializer(0.))\n",
" #x = tf.Variable(0., name=\"x\")\n",
"with tf.variable_scope(\"param\", reuse=True):\n",
" y = tf.get_variable(\"x\")\n",
"\n",
"with tf.variable_scope(\"\", default_name=\"\", reuse=True):\n",
" z = tf.get_variable(\"param/x\", shape=(), initializer=tf.constant_initializer(0.))\n",
"\n",
"print(x is y)\n",
"print(x.op.name)\n",
"print(y.op.name)\n",
"print(z.op.name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Extra material"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Strings"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"text = np.array(\"Do you want some café?\".split())\n",
"text_tensor = tf.constant(text)\n",
"\n",
"with tf.Session() as sess:\n",
" print(text_tensor.eval())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Distributed TensorFlow"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"server = tf.train.Server.create_local_server()"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"x = tf.constant(2) + tf.constant(3)\n",
"with tf.Session(server.target) as sess:\n",
" print(sess.run(x))"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [],
"source": [
"server.target"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"class Const(object):\n",
" def __init__(self, value):\n",
" self.value = value\n",
" def evaluate(self, **variables):\n",
" return self.value\n",
" def __str__(self):\n",
" return str(self.value)\n",
"\n",
"class Var(object):\n",
" def __init__(self, name):\n",
" self.name = name\n",
" def evaluate(self, **variables):\n",
" return variables[self.name]\n",
" def __str__(self):\n",
" return self.name\n",
"\n",
"class BinaryOperator(object):\n",
" def __init__(self, a, b):\n",
" self.a = a\n",
" self.b = b\n",
"\n",
"class Add(BinaryOperator):\n",
" def evaluate(self, **variables):\n",
" return self.a.evaluate(**variables) + self.b.evaluate(**variables)\n",
" def __str__(self):\n",
" return \"{} + {}\".format(self.a, self.b)\n",
"\n",
"class Mul(BinaryOperator):\n",
" def evaluate(self, **variables):\n",
" return self.a.evaluate(**variables) * self.b.evaluate(**variables)\n",
" def __str__(self):\n",
" return \"({}) * ({})\".format(self.a, self.b)\n",
"\n",
"x = Var(\"x\")\n",
"y = Var(\"y\")\n",
"f = Add(Mul(Mul(x, x), y), Add(y, Const(2))) # f(x,y) = x²y + y + 2\n",
"print(\"f(x,y) =\", f)\n",
"print(\"f(3,4) =\", f.evaluate(x=3, y=4))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Computing gradients\n",
"### Mathematical differentiation"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df_dx = Mul(Const(2), Mul(Var(\"x\"), Var(\"y\"))) # df/dx = 2xy\n",
"df_dy = Add(Mul(Var(\"x\"), Var(\"x\")), Const(1)) # df/dy = x² + 1\n",
"print(\"df/dx(3,4) =\", df_dx.evaluate(x=3, y=4))\n",
"print(\"df/dy(3,4) =\", df_dy.evaluate(x=3, y=4))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Numerical differentiation"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def derivative(f, x, y, x_eps, y_eps):\n",
" return (f.evaluate(x = x + x_eps, y = y + y_eps) - f.evaluate(x = x, y = y)) / (x_eps + y_eps)\n",
"\n",
"df_dx_34 = derivative(f, x=3, y=4, x_eps=0.0001, y_eps=0)\n",
"df_dy_34 = derivative(f, x=3, y=4, x_eps=0, y_eps=0.0001)\n",
"print(\"df/dx(3,4) =\", df_dx_34)\n",
"print(\"df/dy(3,4) =\", df_dy_34)"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def f(x, y):\n",
" return x**2*y + y + 2\n",
"\n",
"def derivative(f, x, y, x_eps, y_eps):\n",
" return (f(x + x_eps, y + y_eps) - f(x, y)) / (x_eps + y_eps)\n",
"\n",
"df_dx = derivative(f, 3, 4, 0.00001, 0)\n",
"df_dy = derivative(f, 3, 4, 0, 0.00001)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"print(df_dx)\n",
"print(df_dy)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Symbolic differentiation"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"Const.derive = lambda self, var: Const(0)\n",
"Var.derive = lambda self, var: Const(1) if self.name==var else Const(0)\n",
"Add.derive = lambda self, var: Add(self.a.derive(var), self.b.derive(var))\n",
"Mul.derive = lambda self, var: Add(Mul(self.a, self.b.derive(var)), Mul(self.a.derive(var), self.b))\n",
"\n",
"x = Var(\"x\")\n",
"y = Var(\"y\")\n",
"f = Add(Mul(Mul(x, x), y), Add(y, Const(2))) # f(x,y) = x²y + y + 2\n",
"\n",
"df_dx = f.derive(\"x\") # 2xy\n",
"df_dy = f.derive(\"y\") # x² + 1\n",
"print(\"df/dx(3,4) =\", df_dx.evaluate(x=3, y=4))\n",
"print(\"df/dy(3,4) =\", df_dy.evaluate(x=3, y=4))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Automatic differentiation (autodiff) forward mode"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"class Const(object):\n",
" def __init__(self, value):\n",
" self.value = value\n",
" def evaluate(self, derive, **variables):\n",
" return self.value, 0\n",
" def __str__(self):\n",
" return str(self.value)\n",
"\n",
"class Var(object):\n",
" def __init__(self, name):\n",
" self.name = name\n",
" def evaluate(self, derive, **variables):\n",
" return variables[self.name], (1 if derive == self.name else 0)\n",
" def __str__(self):\n",
" return self.name\n",
"\n",
"class BinaryOperator(object):\n",
" def __init__(self, a, b):\n",
" self.a = a\n",
" self.b = b\n",
"\n",
"class Add(BinaryOperator):\n",
" def evaluate(self, derive, **variables):\n",
" a, da = self.a.evaluate(derive, **variables)\n",
" b, db = self.b.evaluate(derive, **variables)\n",
" return a + b, da + db\n",
" def __str__(self):\n",
" return \"{} + {}\".format(self.a, self.b)\n",
"\n",
"class Mul(BinaryOperator):\n",
" def evaluate(self, derive, **variables):\n",
" a, da = self.a.evaluate(derive, **variables)\n",
" b, db = self.b.evaluate(derive, **variables)\n",
" return a * b, a * db + da * b\n",
" def __str__(self):\n",
" return \"({}) * ({})\".format(self.a, self.b)\n",
"\n",
"x = Var(\"x\")\n",
"y = Var(\"y\")\n",
"f = Add(Mul(Mul(x, x), y), Add(y, Const(2))) # f(x,y) = x²y + y + 2\n",
"f34, df_dx_34 = f.evaluate(x=3, y=4, derive=\"x\")\n",
"f34, df_dy_34 = f.evaluate(x=3, y=4, derive=\"y\")\n",
"print(\"f(3,4) =\", f34)\n",
"print(\"df/dx(3,4) =\", df_dx_34)\n",
"print(\"df/dy(3,4) =\", df_dy_34)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Autodiff Reverse mode"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"class Const(object):\n",
" def __init__(self, value):\n",
" self.derivative = 0\n",
" self.value = value\n",
" def evaluate(self, **variables):\n",
" return self.value\n",
" def backpropagate(self, derivative):\n",
" pass\n",
" def __str__(self):\n",
" return str(self.value)\n",
"\n",
"class Var(object):\n",
" def __init__(self, name):\n",
" self.name = name\n",
" def evaluate(self, **variables):\n",
" self.derivative = 0\n",
" self.value = variables[self.name]\n",
" return self.value\n",
" def backpropagate(self, derivative):\n",
" self.derivative += derivative\n",
" def __str__(self):\n",
" return self.name\n",
"\n",
"class BinaryOperator(object):\n",
" def __init__(self, a, b):\n",
" self.a = a\n",
" self.b = b\n",
"\n",
"class Add(BinaryOperator):\n",
" def evaluate(self, **variables):\n",
" self.derivative = 0\n",
" self.value = self.a.evaluate(**variables) + self.b.evaluate(**variables)\n",
" return self.value\n",
" def backpropagate(self, derivative):\n",
" self.derivative += derivative\n",
" self.a.backpropagate(derivative)\n",
" self.b.backpropagate(derivative)\n",
" def __str__(self):\n",
" return \"{} + {}\".format(self.a, self.b)\n",
"\n",
"class Mul(BinaryOperator):\n",
" def evaluate(self, **variables):\n",
" self.derivative = 0\n",
" self.value = self.a.evaluate(**variables) * self.b.evaluate(**variables)\n",
" return self.value\n",
" def backpropagate(self, derivative):\n",
" self.derivative += derivative\n",
" self.a.backpropagate(derivative * self.b.value)\n",
" self.b.backpropagate(derivative * self.a.value)\n",
" def __str__(self):\n",
" return \"({}) * ({})\".format(self.a, self.b)"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"x = Var(\"x\")\n",
"y = Var(\"y\")\n",
"f = Add(Mul(Mul(x, x), y), Add(y, Const(2))) # f(x,y) = x²y + y + 2\n",
"f34 = f.evaluate(x=3, y=4)\n",
"f.backpropagate(1)\n",
"print(\"f(3,4) =\", f34)\n",
"print(\"df/dx(3,4) =\", x.derivative)\n",
"print(\"df/dy(3,4) =\", y.derivative)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Autodiff reverse mode (using TensorFlow)"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"x = tf.Variable(3., name=\"x\")\n",
"y = tf.Variable(4., name=\"x\")\n",
"f = x*x*y + y + 2\n",
"\n",
"gradients = tf.gradients(f, [x, y])\n",
"\n",
"init = tf.initialize_all_variables()\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" f_val, gradients_val = sess.run([f, gradients])\n",
"\n",
"f_val, gradients_val"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Exercise solutions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Coming soon**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
},
"nav_menu": {
"height": "603px",
"width": "616px"
},
"toc": {
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 6,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": true
}
},
"nbformat": 4,
"nbformat_minor": 0
}