handson-ml/13_convolutional_neural_net...

611 lines
15 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Chapter 13 Convolutional Neural Networks**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"_This notebook contains all the sample code and solutions to the exercices in chapter 13._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# To support both python 2 and python 3\n",
"from __future__ import division, print_function, unicode_literals\n",
"\n",
"# Common imports\n",
"import numpy as np\n",
"import numpy.random as rnd\n",
"import os\n",
"\n",
"# to make this notebook's output stable across runs\n",
"rnd.seed(42)\n",
"\n",
"# To plot pretty figures\n",
"%matplotlib inline\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"plt.rcParams['axes.labelsize'] = 14\n",
"plt.rcParams['xtick.labelsize'] = 12\n",
"plt.rcParams['ytick.labelsize'] = 12\n",
"\n",
"# Where to save the figures\n",
"PROJECT_ROOT_DIR = \".\"\n",
"CHAPTER_ID = \"cnn\"\n",
"\n",
"def save_fig(fig_id, tight_layout=True):\n",
" path = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id + \".png\")\n",
" print(\"Saving figure\", fig_id)\n",
" if tight_layout:\n",
" plt.tight_layout()\n",
" plt.savefig(path, format='png', dpi=300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A couple utility functions to plot grayscale and RGB images:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def plot_image(image):\n",
" plt.imshow(image, cmap=\"gray\", interpolation=\"nearest\")\n",
" plt.axis(\"off\")\n",
"\n",
"def plot_color_image(image):\n",
" plt.imshow(image.astype(np.uint8),interpolation=\"nearest\")\n",
" plt.axis(\"off\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And of course we will need TensorFlow:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import tensorflow as tf"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Convolutional layer"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.datasets import load_sample_image\n",
"china = load_sample_image(\"china.jpg\")\n",
"flower = load_sample_image(\"flower.jpg\")\n",
"image = china[150:220, 130:250]\n",
"height, width, channels = image.shape\n",
"image_grayscale = image.mean(axis=2).astype(np.float32)\n",
"images = image_grayscale.reshape(1, height, width, 1)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"fmap = np.zeros(shape=(7, 7, 1, 2), dtype=np.float32)\n",
"fmap[:, 3, 0, 0] = 1\n",
"fmap[3, :, 0, 1] = 1\n",
"fmap[:, :, 0, 0]\n",
"plot_image(fmap[:, :, 0, 0])\n",
"plt.show()\n",
"plot_image(fmap[:, :, 0, 1])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, height, width, 1))\n",
"feature_maps = tf.constant(fmap)\n",
"convolution = tf.nn.conv2d(X, feature_maps, strides=[1,1,1,1], padding=\"SAME\", use_cudnn_on_gpu=False)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" output = convolution.eval(feed_dict={X: images})"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"plot_image(images[0, :, :, 0])\n",
"save_fig(\"china_original\", tight_layout=False)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"plot_image(output[0, :, :, 0])\n",
"save_fig(\"china_vertical\", tight_layout=False)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"plot_image(output[0, :, :, 1])\n",
"save_fig(\"china_horizontal\", tight_layout=False)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Simple example"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"dataset = np.array([china, flower], dtype=np.float32)\n",
"batch_size, height, width, channels = dataset.shape\n",
"\n",
"filters = np.zeros(shape=(7, 7, channels, 2), dtype=np.float32)\n",
"filters[:, 3, :, 0] = 1 # vertical line\n",
"filters[3, :, :, 1] = 1 # horizontal line\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, height, width, channels))\n",
"convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], padding=\"SAME\")\n",
"\n",
"with tf.Session() as sess:\n",
" output = sess.run(convolution, feed_dict={X: dataset})\n",
"\n",
"for image_index in (0, 1):\n",
" for feature_map_index in (0, 1):\n",
" plot_image(output[image_index, :, :, feature_map_index])\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## VALID vs SAME padding"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"filter_primes = np.array([2., 3., 5., 7., 11., 13.], dtype=np.float32)\n",
"x = tf.constant(np.arange(1, 13+1, dtype=np.float32).reshape([1, 1, 13, 1]))\n",
"filters = tf.constant(filter_primes.reshape(1, 6, 1, 1))\n",
"\n",
"valid_conv = tf.nn.conv2d(x, filters, strides=[1, 1, 5, 1], padding='VALID')\n",
"same_conv = tf.nn.conv2d(x, filters, strides=[1, 1, 5, 1], padding='SAME')\n",
"\n",
"with tf.Session() as sess:\n",
" print(\"VALID:\\n\", valid_conv.eval())\n",
" print(\"SAME:\\n\", same_conv.eval())"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"print(\"VALID:\")\n",
"print(np.array([1,2,3,4,5,6]).T.dot(filter_primes))\n",
"print(np.array([6,7,8,9,10,11]).T.dot(filter_primes))\n",
"print(\"SAME:\")\n",
"print(np.array([0,1,2,3,4,5]).T.dot(filter_primes))\n",
"print(np.array([5,6,7,8,9,10]).T.dot(filter_primes))\n",
"print(np.array([10,11,12,13,0,0]).T.dot(filter_primes))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Pooling layer"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"batch_size, height, width, channels = dataset.shape\n",
"\n",
"filters = np.zeros(shape=(7, 7, channels, 2), dtype=np.float32)\n",
"filters[:, 3, :, 0] = 1 # vertical line\n",
"filters[3, :, :, 1] = 1 # horizontal line\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, height, width, channels))\n",
"max_pool = tf.nn.max_pool(X, ksize=[1, 2, 2, 1], strides=[1,2,2,1], padding=\"VALID\")\n",
"\n",
"with tf.Session() as sess:\n",
" output = sess.run(max_pool, feed_dict={X: dataset})\n",
"\n",
"plot_color_image(dataset[0])\n",
"save_fig(\"china_original\")\n",
"plt.show()\n",
" \n",
"plot_color_image(output[0])\n",
"save_fig(\"china_max_pool\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# MNIST"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.datasets import fetch_mldata\n",
"\n",
"mnist = fetch_mldata('MNIST original')\n",
"X_train, X_test = mnist[\"data\"][:60000].astype(np.float64), mnist[\"data\"][60000:].astype(np.float64)\n",
"y_train, y_test = mnist[\"target\"][:60000].astype(np.int64), mnist[\"target\"][60000:].astype(np.int64)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"height, width = 28, 28\n",
"images = X_test[5000].reshape(1, height, width, 1)\n",
"plot_image(images[0, :, :, 0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Inception v3"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"import tarfile\n",
"import urllib.request\n",
"\n",
"TF_MODELS_URL = \"http://download.tensorflow.org/models\"\n",
"INCEPTION_V3_URL = TF_MODELS_URL + \"/inception_v3_2016_08_28.tar.gz\"\n",
"INCEPTION_PATH = os.path.join(\"datasets\", \"inception\")\n",
"INCEPTION_V3_CHECKPOINT_PATH = os.path.join(INCEPTION_PATH, \"inception_v3.ckpt\")\n",
"\n",
"def download_progress(count, block_size, total_size):\n",
" percent = count * block_size * 100 // total_size\n",
" sys.stdout.write(\"\\rDownloading: {}%\".format(percent))\n",
" sys.stdout.flush()\n",
"\n",
"def fetch_pretrained_inception_v3(url=INCEPTION_V3_URL, path=INCEPTION_PATH):\n",
" if os.path.exists(INCEPTION_V3_CHECKPOINT_PATH):\n",
" return\n",
" os.makedirs(path, exist_ok=True)\n",
" tgz_path = os.path.join(path, \"inception_v3.tgz\")\n",
" urllib.request.urlretrieve(url, tgz_path, reporthook=download_progress)\n",
" inception_tgz = tarfile.open(tgz_path)\n",
" inception_tgz.extractall(path=path)\n",
" inception_tgz.close()\n",
" os.remove(tgz_path)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"fetch_pretrained_inception_v3()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import re\n",
"\n",
"CLASS_NAME_REGEX = re.compile(r\"^n\\d+\\s+(.*)\\s*$\", re.M | re.U)\n",
"\n",
"def load_class_names():\n",
" with open(os.path.join(\"datasets\",\"inception\",\"imagenet_class_names.txt\"), \"rb\") as f:\n",
" content = f.read().decode(\"utf-8\")\n",
" return CLASS_NAME_REGEX.findall(content)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"class_names = load_class_names()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"width = 299\n",
"height = 299\n",
"channels = 3"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.image as mpimg\n",
"test_image = mpimg.imread(os.path.join(\"images\",\"cnn\",\"test_image.png\"))[:, :, :channels]\n",
"plt.imshow(test_image)\n",
"plt.axis(\"off\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import tensorflow as tf\n",
"from nets.inception_v3 import inception_v3, inception_v3_arg_scope\n",
"import tensorflow.contrib.slim as slim\n",
"\n",
"tf.reset_default_graph()\n",
"\n",
"X = tf.placeholder(tf.float32, shape=[None, height, width, channels], name=\"X\")\n",
"with slim.arg_scope(inception_v3_arg_scope()):\n",
" logits, end_points = inception_v3(X, num_classes=1001, is_training=False)\n",
"predictions = end_points[\"Predictions\"]\n",
"saver = tf.train.Saver()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X_test = test_image.reshape(-1, height, width, channels)\n",
"\n",
"with tf.Session() as sess:\n",
" saver.restore(sess, INCEPTION_V3_CHECKPOINT_PATH)\n",
" predictions_val = predictions.eval(feed_dict={X: X_test})"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"class_names[np.argmax(predictions_val[0])]"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"np.argmax(predictions_val, axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"top_5 = np.argpartition(predictions_val[0], -5)[-5:]\n",
"top_5 = top_5[np.argsort(predictions_val[0][top_5])]\n",
"for i in top_5:\n",
" print(\"{0}: {1:.2f}%\".format(class_names[i], 100*predictions_val[0][i]))"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Exercise solutions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Coming soon**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
},
"nav_menu": {},
"toc": {
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 6,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 0
}