handson-ml/environment.yml

54 lines
2.8 KiB
YAML

name: homl3
channels:
- conda-forge
- defaults
dependencies:
- atari_py=0.2.6 # used only in chapter 17
- box2d-py=2.3 # used only in chapter 17
- ftfy=6.0 # used only in chapter 15 by the transformers library
- graphviz # used only in chapter 5 for dot files
- gym=0.19 # used only in chapter 17
- ipython=7.28 # a powerful Python shell
- ipywidgets=7.6 # optionally used only in chapter 11 for tqdm in Jupyter
- joblib=0.14 # used only in chapter 2 to save/load Scikit-Learn models
- jupyterlab=3.2 # to edit and run Jupyter notebooks
- matplotlib=3.4 # beautiful plots. See tutorial tools_matplotlib.ipynb
- nbdime=3.1 # optional tool to diff Jupyter notebooks
- nltk=3.6 # optionally used in chapter 3, exercise 4
- numexpr=2.7 # used only in the Pandas tutorial for numerical expressions
- numpy=1.19 # Powerful n-dimensional arrays and numerical computing tools
- opencv=4.5 # used only in chapter 17 by TF Agents for image preprocessing
- pandas=1.3 # data analysis and manipulation tool
- pillow=8.3 # image manipulation library, (used by matplotlib.image.imread)
- pip # Python's package-management system
- py-xgboost=1.4 # used only in chapter 6 for optimized Gradient Boosting
- pyglet=1.5 # used only in chapter 17 to render environments
- pyopengl=3.1 # used only in chapter 17 to render environments
- python=3.8 # Python! Not using latest version as some libs lack support
- python-graphviz # used only in chapter 5 for dot files
- pyvirtualdisplay=2.2 # used only in chapter 17 if on headless server
- requests=2.26 # used only in chapter 18 for REST API queries
- scikit-learn=1.0 # machine learning library
- scipy=1.7 # scientific/technical computing library
- tqdm=4.62 # a progress bar library
- wheel # built-package format for pip
- widgetsnbextension=3.5 # interactive HTML widgets for Jupyter notebooks
- pip:
- tensorboard-plugin-profile~=2.5.0 # profiling plugin for TensorBoard
- tensorboard~=2.7.0 # TensorFlow's visualization toolkit
- tensorflow-addons~=0.14.0 # used only in chapter 15 for a seq2seq impl.
- tensorflow-datasets~=4.4.0 # datasets repository, ready to use
- tensorflow-hub~=0.12.0 # trained ML models repository, ready to use
- tensorflow-probability~=0.14.1 # Optional. Probability/Stats lib.
- tensorflow-serving-api~=2.6.0 # or tensorflow-serving-api-gpu if gpu
- tensorflow~=2.6.0 # Deep Learning library
- tf-agents~=0.10.0 # Reinforcement Learning lib based on TensorFlow
- tfx~=1.3.0 # platform to deploy production ML pipelines
- transformers~=4.11.3 # Natural Language Processing lib for TF or PyTorch
- urlextract~=1.4.0 # optionally used in chapter 3, exercise 4
- attrs=20.3
- click=7.1
- packaging=20.9
- six=1.15
- typing-extensions=3.7