Notebooks zum Lektüre
 
Go to file
Aurélien Geron 7e8589dfc3 Activate table of contents (2) extension 2016-09-27 12:18:29 +02:00
images Add images directory 2016-05-22 17:43:26 +02:00
nets Add TF models slim nets 2016-09-25 18:42:01 +02:00
.gitignore Add TF models slim nets 2016-09-25 18:42:01 +02:00
Dockerfile Activate table of contents (2) extension 2016-09-27 12:18:29 +02:00
LICENSE First notebook added: matplotlib 2016-02-16 21:40:20 +01:00
README.md Fix jupyter extensions 2016-09-27 12:06:59 +02:00
classification.ipynb Add import os 2016-05-22 18:07:41 +02:00
end_to_end_project.ipynb Add import os 2016-05-22 18:07:41 +02:00
fundamentals.ipynb Add import os 2016-05-22 18:07:41 +02:00
index.ipynb Add chapters to the index 2016-05-22 17:53:16 +02:00
math_linear_algebra.ipynb Add datasets, fix a few math linear algebra issues 2016-05-03 11:35:17 +02:00
requirements.txt Fix jupyter extensions 2016-09-27 12:06:59 +02:00
tools_matplotlib.ipynb fixed typo in tools_matplotlib.ipynb 2016-03-04 08:49:56 +01:00
tools_numpy.ipynb Remove one level of headers 2016-03-03 18:40:31 +01:00
tools_pandas.ipynb Add datasets, fix a few math linear algebra issues 2016-05-03 11:35:17 +02:00
training_linear_models.ipynb fix PROJECT_ROOT_DIR path 2016-05-22 18:16:29 +02:00

README.md

Machine Learning Notebooks

Gitter

This project aims at teaching you the fundamentals of Machine Learning in python.

Simply open the Jupyter notebooks you are interested in:

  • using Binder: Binder
    • this let's you experiment with the code examples
  • or using jupyter.org's notebook viewer
  • or by cloning this repository and running Jupyter locally
    • if you prefer this option, follow the installation instructions below.

Installation

No installation is required, just click the launch binder button above, and you're good to go! But if you insist, here's how to install these notebooks on your system.

Obviously, you will need git and python (python 3 is recommended, but python 2 should work as well).

First, clone this repository:

$ cd {your development directory}
$ git clone https://github.com/ageron/handson-ml.git
$ cd handson-ml

If you want an isolated environment, you can use virtualenv:

$ virtualenv env
$ source ./env/bin/activate

There are different packages for TensorFlow, depending on your platform. Please edit requirements.txt using your favorite editor, and make sure only the right one for your platform is uncommented. Default is Python 3.5, Ubuntu/Linux 64-bits, CPU-only.

Then install the required python packages using pip:

$ pip install -r requirements.txt

If you want to install the Jupyter extensions, run the following command (this is optional but recommended as it allows you to view a table of contents in each notebook):

$ jupyter contrib nbextension install --user

Finally, launch Jupyter:

$ jupyter notebook

This should start the Jupyter server locally, and open your browser. Click on index.ipynb to get started (note: you can visit /nbextensions to turn extensions on or off).