46 lines
2.6 KiB
YAML
46 lines
2.6 KiB
YAML
name: homl3
|
|
channels:
|
|
- conda-forge
|
|
- defaults
|
|
dependencies:
|
|
- box2d-py=2.3 # used only in chapter 18, exercise 8
|
|
- ffmpeg=6.1 # used only in the matplotlib tutorial to generate animations
|
|
- graphviz # used only in chapter 6 for dot files
|
|
- python-graphviz # used only in chapter 6 for dot files
|
|
- ipython=8.17 # a powerful Python shell
|
|
- ipywidgets=8.1 # optionally used only in chapter 12 for tqdm in Jupyter
|
|
- joblib=1.3 # used only in chapter 2 to save/load Scikit-Learn models
|
|
- jupyterlab=4.0 # to edit and run Jupyter notebooks
|
|
- matplotlib=3.8 # beautiful plots. See tutorial tools_matplotlib.ipynb
|
|
- nbdime=3.2 # optional tool to diff Jupyter notebooks
|
|
- nltk=3.8 # optionally used in chapter 3, exercise 4
|
|
- numexpr=2.8 # used only in the Pandas tutorial for numerical expressions
|
|
- numpy=1.26 # Powerful n-dimensional arrays and numerical computing tools
|
|
- pandas=2.1 # data analysis and manipulation tool
|
|
- pillow=10.1 # image manipulation library, (used by matplotlib.image.imread)
|
|
- pip # Python's package-management system
|
|
- py-xgboost=1.7 # used only in chapter 6 for optimized Gradient Boosting
|
|
- pydot=1.4 # used only for in chapter 10 for tf.keras.utils.plot_model()
|
|
- python=3.10 # your beloved programming language! :)
|
|
- requests=2.31 # used only in chapter 19 for REST API queries
|
|
- scikit-learn=1.3 # machine learning library
|
|
- scipy=1.11 # scientific/technical computing library
|
|
- statsmodels=0.14 # used only in chapter 15 for time series analysis
|
|
- tqdm=4.66 # used only in chapter 12 to display nice progress bars
|
|
- wheel # built-package format for pip
|
|
- widgetsnbextension=4.0 # interactive HTML widgets for Jupyter notebooks
|
|
- pip:
|
|
- keras-core # used in chapter 10
|
|
- keras-tuner~=1.4.6 # used in chapters 10 and 19 for hyperparameter tuning
|
|
- tensorboard-plugin-profile~=2.14.0 # profiling plugin for TensorBoard
|
|
- tensorboard~=2.14.1 # TensorFlow's visualization toolkit
|
|
- tensorflow-datasets~=4.9.3 # datasets repository, ready to use
|
|
- tensorflow-hub~=0.15.0 # trained ML models repository, ready to use
|
|
- tensorflow-serving-api~=2.14.0 # or tensorflow-serving-api-gpu if gpu
|
|
- tensorflow~=2.14.0 # Deep Learning library
|
|
- transformers~=4.35.0 # Natural Language Processing lib for TF or PyTorch
|
|
- urlextract~=1.8.0 # optionally used in chapter 3, exercise 4
|
|
- gymnasium[classic_control,atari,accept-rom-license] # used only in ch18
|
|
- google-cloud-aiplatform~=1.36.2 # used only in chapter 19
|
|
- google-cloud-storage~=2.13.0 # used only in chapter 19
|