211 lines
8.5 KiB
Python
211 lines
8.5 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for nets.inception_v1."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from nets import inception
|
|
|
|
slim = tf.contrib.slim
|
|
|
|
|
|
class InceptionV1Test(tf.test.TestCase):
|
|
|
|
def testBuildClassificationNetwork(self):
|
|
batch_size = 5
|
|
height, width = 224, 224
|
|
num_classes = 1000
|
|
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
logits, end_points = inception.inception_v1(inputs, num_classes)
|
|
self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
|
|
self.assertListEqual(logits.get_shape().as_list(),
|
|
[batch_size, num_classes])
|
|
self.assertTrue('Predictions' in end_points)
|
|
self.assertListEqual(end_points['Predictions'].get_shape().as_list(),
|
|
[batch_size, num_classes])
|
|
|
|
def testBuildBaseNetwork(self):
|
|
batch_size = 5
|
|
height, width = 224, 224
|
|
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
mixed_6c, end_points = inception.inception_v1_base(inputs)
|
|
self.assertTrue(mixed_6c.op.name.startswith('InceptionV1/Mixed_5c'))
|
|
self.assertListEqual(mixed_6c.get_shape().as_list(),
|
|
[batch_size, 7, 7, 1024])
|
|
expected_endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
|
|
'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b',
|
|
'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c',
|
|
'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2',
|
|
'Mixed_5b', 'Mixed_5c']
|
|
self.assertItemsEqual(end_points.keys(), expected_endpoints)
|
|
|
|
def testBuildOnlyUptoFinalEndpoint(self):
|
|
batch_size = 5
|
|
height, width = 224, 224
|
|
endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
|
|
'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
|
|
'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d',
|
|
'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b',
|
|
'Mixed_5c']
|
|
for index, endpoint in enumerate(endpoints):
|
|
with tf.Graph().as_default():
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
out_tensor, end_points = inception.inception_v1_base(
|
|
inputs, final_endpoint=endpoint)
|
|
self.assertTrue(out_tensor.op.name.startswith(
|
|
'InceptionV1/' + endpoint))
|
|
self.assertItemsEqual(endpoints[:index+1], end_points)
|
|
|
|
def testBuildAndCheckAllEndPointsUptoMixed5c(self):
|
|
batch_size = 5
|
|
height, width = 224, 224
|
|
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
_, end_points = inception.inception_v1_base(inputs,
|
|
final_endpoint='Mixed_5c')
|
|
endpoints_shapes = {'Conv2d_1a_7x7': [5, 112, 112, 64],
|
|
'MaxPool_2a_3x3': [5, 56, 56, 64],
|
|
'Conv2d_2b_1x1': [5, 56, 56, 64],
|
|
'Conv2d_2c_3x3': [5, 56, 56, 192],
|
|
'MaxPool_3a_3x3': [5, 28, 28, 192],
|
|
'Mixed_3b': [5, 28, 28, 256],
|
|
'Mixed_3c': [5, 28, 28, 480],
|
|
'MaxPool_4a_3x3': [5, 14, 14, 480],
|
|
'Mixed_4b': [5, 14, 14, 512],
|
|
'Mixed_4c': [5, 14, 14, 512],
|
|
'Mixed_4d': [5, 14, 14, 512],
|
|
'Mixed_4e': [5, 14, 14, 528],
|
|
'Mixed_4f': [5, 14, 14, 832],
|
|
'MaxPool_5a_2x2': [5, 7, 7, 832],
|
|
'Mixed_5b': [5, 7, 7, 832],
|
|
'Mixed_5c': [5, 7, 7, 1024]}
|
|
|
|
self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
|
|
for endpoint_name in endpoints_shapes:
|
|
expected_shape = endpoints_shapes[endpoint_name]
|
|
self.assertTrue(endpoint_name in end_points)
|
|
self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
|
|
expected_shape)
|
|
|
|
def testModelHasExpectedNumberOfParameters(self):
|
|
batch_size = 5
|
|
height, width = 224, 224
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
with slim.arg_scope(inception.inception_v1_arg_scope()):
|
|
inception.inception_v1_base(inputs)
|
|
total_params, _ = slim.model_analyzer.analyze_vars(
|
|
slim.get_model_variables())
|
|
self.assertAlmostEqual(5607184, total_params)
|
|
|
|
def testHalfSizeImages(self):
|
|
batch_size = 5
|
|
height, width = 112, 112
|
|
|
|
inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
mixed_5c, _ = inception.inception_v1_base(inputs)
|
|
self.assertTrue(mixed_5c.op.name.startswith('InceptionV1/Mixed_5c'))
|
|
self.assertListEqual(mixed_5c.get_shape().as_list(),
|
|
[batch_size, 4, 4, 1024])
|
|
|
|
def testUnknownImageShape(self):
|
|
tf.reset_default_graph()
|
|
batch_size = 2
|
|
height, width = 224, 224
|
|
num_classes = 1000
|
|
input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
|
|
with self.test_session() as sess:
|
|
inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3))
|
|
logits, end_points = inception.inception_v1(inputs, num_classes)
|
|
self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
|
|
self.assertListEqual(logits.get_shape().as_list(),
|
|
[batch_size, num_classes])
|
|
pre_pool = end_points['Mixed_5c']
|
|
feed_dict = {inputs: input_np}
|
|
tf.initialize_all_variables().run()
|
|
pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
|
|
self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024])
|
|
|
|
def testUnknowBatchSize(self):
|
|
batch_size = 1
|
|
height, width = 224, 224
|
|
num_classes = 1000
|
|
|
|
inputs = tf.placeholder(tf.float32, (None, height, width, 3))
|
|
logits, _ = inception.inception_v1(inputs, num_classes)
|
|
self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
|
|
self.assertListEqual(logits.get_shape().as_list(),
|
|
[None, num_classes])
|
|
images = tf.random_uniform((batch_size, height, width, 3))
|
|
|
|
with self.test_session() as sess:
|
|
sess.run(tf.initialize_all_variables())
|
|
output = sess.run(logits, {inputs: images.eval()})
|
|
self.assertEquals(output.shape, (batch_size, num_classes))
|
|
|
|
def testEvaluation(self):
|
|
batch_size = 2
|
|
height, width = 224, 224
|
|
num_classes = 1000
|
|
|
|
eval_inputs = tf.random_uniform((batch_size, height, width, 3))
|
|
logits, _ = inception.inception_v1(eval_inputs, num_classes,
|
|
is_training=False)
|
|
predictions = tf.argmax(logits, 1)
|
|
|
|
with self.test_session() as sess:
|
|
sess.run(tf.initialize_all_variables())
|
|
output = sess.run(predictions)
|
|
self.assertEquals(output.shape, (batch_size,))
|
|
|
|
def testTrainEvalWithReuse(self):
|
|
train_batch_size = 5
|
|
eval_batch_size = 2
|
|
height, width = 224, 224
|
|
num_classes = 1000
|
|
|
|
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
|
|
inception.inception_v1(train_inputs, num_classes)
|
|
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
|
|
logits, _ = inception.inception_v1(eval_inputs, num_classes, reuse=True)
|
|
predictions = tf.argmax(logits, 1)
|
|
|
|
with self.test_session() as sess:
|
|
sess.run(tf.initialize_all_variables())
|
|
output = sess.run(predictions)
|
|
self.assertEquals(output.shape, (eval_batch_size,))
|
|
|
|
def testLogitsNotSqueezed(self):
|
|
num_classes = 25
|
|
images = tf.random_uniform([1, 224, 224, 3])
|
|
logits, _ = inception.inception_v1(images,
|
|
num_classes=num_classes,
|
|
spatial_squeeze=False)
|
|
|
|
with self.test_session() as sess:
|
|
tf.initialize_all_variables().run()
|
|
logits_out = sess.run(logits)
|
|
self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
tf.test.main()
|