handson-ml/02_end_to_end_machine_learn...

2033 lines
53 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Chapter 2 End-to-end Machine Learning project**\n",
"\n",
"*Welcome to Machine Learning Housing Corp.! Your task is to predict median house values in Californian districts, given a number of features from these districts.*\n",
"\n",
"*This notebook contains all the sample code and solutions to the exercices in chapter 2.*"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Note**: You may find little differences between the code outputs in the book and in these Jupyter notebooks: these slight differences are mostly due to the random nature of many training algorithms: although I have tried to make these notebooks' outputs as constant as possible, it is impossible to guarantee that they will produce the exact same output on every platform. Also, some data structures (such as dictionaries) do not preserve the item order. Finally, I fixed a few minor bugs (I added notes next to the concerned cells) which lead to slightly different results, without changing the ideas presented in the book."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# To support both python 2 and python 3\n",
"from __future__ import division, print_function, unicode_literals\n",
"\n",
"# Common imports\n",
"import numpy as np\n",
"import os\n",
"\n",
"# to make this notebook's output stable across runs\n",
"np.random.seed(42)\n",
"\n",
"# To plot pretty figures\n",
"%matplotlib inline\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"plt.rcParams['axes.labelsize'] = 14\n",
"plt.rcParams['xtick.labelsize'] = 12\n",
"plt.rcParams['ytick.labelsize'] = 12\n",
"\n",
"# Where to save the figures\n",
"PROJECT_ROOT_DIR = \".\"\n",
"CHAPTER_ID = \"end_to_end_project\"\n",
"\n",
"def save_fig(fig_id, tight_layout=True):\n",
" path = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id + \".png\")\n",
" print(\"Saving figure\", fig_id)\n",
" if tight_layout:\n",
" plt.tight_layout()\n",
" plt.savefig(path, format='png', dpi=300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Get the data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import os\n",
"import tarfile\n",
"from six.moves import urllib\n",
"\n",
"DOWNLOAD_ROOT = \"https://raw.githubusercontent.com/ageron/handson-ml/master/\"\n",
"HOUSING_PATH = os.path.join(\"datasets\", \"housing\")\n",
"HOUSING_URL = DOWNLOAD_ROOT + \"datasets/housing/housing.tgz\"\n",
"\n",
"def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH):\n",
" if not os.path.isdir(housing_path):\n",
" os.makedirs(housing_path)\n",
" tgz_path = os.path.join(housing_path, \"housing.tgz\")\n",
" urllib.request.urlretrieve(housing_url, tgz_path)\n",
" housing_tgz = tarfile.open(tgz_path)\n",
" housing_tgz.extractall(path=housing_path)\n",
" housing_tgz.close()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"fetch_housing_data()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"def load_housing_data(housing_path=HOUSING_PATH):\n",
" csv_path = os.path.join(housing_path, \"housing.csv\")\n",
" return pd.read_csv(csv_path)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"housing = load_housing_data()\n",
"housing.head()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"housing.info()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"housing[\"ocean_proximity\"].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"housing.describe()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"housing.hist(bins=50, figsize=(20,15))\n",
"save_fig(\"attribute_histogram_plots\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# to make this notebook's output identical at every run\n",
"np.random.seed(42)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"# For illustration only. Sklearn has train_test_split()\n",
"def split_train_test(data, test_ratio):\n",
" shuffled_indices = np.random.permutation(len(data))\n",
" test_set_size = int(len(data) * test_ratio)\n",
" test_indices = shuffled_indices[:test_set_size]\n",
" train_indices = shuffled_indices[test_set_size:]\n",
" return data.iloc[train_indices], data.iloc[test_indices]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"train_set, test_set = split_train_test(housing, 0.2)\n",
"print(len(train_set), \"train +\", len(test_set), \"test\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import hashlib\n",
"\n",
"def test_set_check(identifier, test_ratio, hash):\n",
" return hash(np.int64(identifier)).digest()[-1] < 256 * test_ratio\n",
"\n",
"def split_train_test_by_id(data, test_ratio, id_column, hash=hashlib.md5):\n",
" ids = data[id_column]\n",
" in_test_set = ids.apply(lambda id_: test_set_check(id_, test_ratio, hash))\n",
" return data.loc[~in_test_set], data.loc[in_test_set]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# This version supports both Python 2 and Python 3, instead of just Python 3.\n",
"def test_set_check(identifier, test_ratio, hash):\n",
" return bytearray(hash(np.int64(identifier)).digest())[-1] < 256 * test_ratio"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"housing_with_id = housing.reset_index() # adds an `index` column\n",
"train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, \"index\")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"housing_with_id[\"id\"] = housing[\"longitude\"] * 1000 + housing[\"latitude\"]\n",
"train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, \"id\")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"test_set.head()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"test_set.head()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"housing[\"median_income\"].hist()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Divide by 1.5 to limit the number of income categories\n",
"housing[\"income_cat\"] = np.ceil(housing[\"median_income\"] / 1.5)\n",
"# Label those above 5 as 5\n",
"housing[\"income_cat\"].where(housing[\"income_cat\"] < 5, 5.0, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"housing[\"income_cat\"].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"housing[\"income_cat\"].hist()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.model_selection import StratifiedShuffleSplit\n",
"\n",
"split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)\n",
"for train_index, test_index in split.split(housing, housing[\"income_cat\"]):\n",
" strat_train_set = housing.loc[train_index]\n",
" strat_test_set = housing.loc[test_index]"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"housing[\"income_cat\"].value_counts() / len(housing)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def income_cat_proportions(data):\n",
" return data[\"income_cat\"].value_counts() / len(data)\n",
"\n",
"train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)\n",
"\n",
"compare_props = pd.DataFrame({\n",
" \"Overall\": income_cat_proportions(housing),\n",
" \"Stratified\": income_cat_proportions(strat_test_set),\n",
" \"Random\": income_cat_proportions(test_set),\n",
"}).sort_index()\n",
"compare_props[\"Rand. %error\"] = 100 * compare_props[\"Random\"] / compare_props[\"Overall\"] - 100\n",
"compare_props[\"Strat. %error\"] = 100 * compare_props[\"Stratified\"] / compare_props[\"Overall\"] - 100"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"compare_props"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"for set_ in (strat_train_set, strat_test_set):\n",
" set_.drop(\"income_cat\", axis=1, inplace=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Discover and visualize the data to gain insights"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"housing = strat_train_set.copy()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"housing.plot(kind=\"scatter\", x=\"longitude\", y=\"latitude\")\n",
"save_fig(\"bad_visualization_plot\")"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"housing.plot(kind=\"scatter\", x=\"longitude\", y=\"latitude\", alpha=0.1)\n",
"save_fig(\"better_visualization_plot\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The argument `sharex=False` fixes a display bug (the x-axis values and legend were not displayed). This is a temporary fix (see: https://github.com/pandas-dev/pandas/issues/10611). Thanks to Wilmer Arellano for pointing it out."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"housing.plot(kind=\"scatter\", x=\"longitude\", y=\"latitude\", alpha=0.4,\n",
" s=housing[\"population\"]/100, label=\"population\", figsize=(10,7),\n",
" c=\"median_house_value\", cmap=plt.get_cmap(\"jet\"), colorbar=True,\n",
" sharex=False)\n",
"plt.legend()\n",
"save_fig(\"housing_prices_scatterplot\")"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.image as mpimg\n",
"california_img=mpimg.imread(PROJECT_ROOT_DIR + '/images/end_to_end_project/california.png')\n",
"ax = housing.plot(kind=\"scatter\", x=\"longitude\", y=\"latitude\", figsize=(10,7),\n",
" s=housing['population']/100, label=\"Population\",\n",
" c=\"median_house_value\", cmap=plt.get_cmap(\"jet\"),\n",
" colorbar=False, alpha=0.4,\n",
" )\n",
"plt.imshow(california_img, extent=[-124.55, -113.80, 32.45, 42.05], alpha=0.5)\n",
"plt.ylabel(\"Latitude\", fontsize=14)\n",
"plt.xlabel(\"Longitude\", fontsize=14)\n",
"\n",
"prices = housing[\"median_house_value\"]\n",
"tick_values = np.linspace(prices.min(), prices.max(), 11)\n",
"cbar = plt.colorbar()\n",
"cbar.ax.set_yticklabels([\"$%dk\"%(round(v/1000)) for v in tick_values], fontsize=14)\n",
"cbar.set_label('Median House Value', fontsize=16)\n",
"\n",
"plt.legend(fontsize=16)\n",
"save_fig(\"california_housing_prices_plot\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"corr_matrix = housing.corr()"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"corr_matrix[\"median_house_value\"].sort_values(ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"# from pandas.tools.plotting import scatter_matrix # For older versions of Pandas\n",
"from pandas.plotting import scatter_matrix\n",
"\n",
"attributes = [\"median_house_value\", \"median_income\", \"total_rooms\",\n",
" \"housing_median_age\"]\n",
"scatter_matrix(housing[attributes], figsize=(12, 8))\n",
"save_fig(\"scatter_matrix_plot\")"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"housing.plot(kind=\"scatter\", x=\"median_income\", y=\"median_house_value\",\n",
" alpha=0.1)\n",
"plt.axis([0, 16, 0, 550000])\n",
"save_fig(\"income_vs_house_value_scatterplot\")"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"housing[\"rooms_per_household\"] = housing[\"total_rooms\"]/housing[\"households\"]\n",
"housing[\"bedrooms_per_room\"] = housing[\"total_bedrooms\"]/housing[\"total_rooms\"]\n",
"housing[\"population_per_household\"]=housing[\"population\"]/housing[\"households\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: there was a bug in the previous cell, in the definition of the `rooms_per_household` attribute. This explains why the correlation value below differs slightly from the value in the book (unless you are reading the latest version)."
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"corr_matrix = housing.corr()\n",
"corr_matrix[\"median_house_value\"].sort_values(ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"housing.plot(kind=\"scatter\", x=\"rooms_per_household\", y=\"median_house_value\",\n",
" alpha=0.2)\n",
"plt.axis([0, 5, 0, 520000])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"housing.describe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Prepare the data for Machine Learning algorithms"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"housing = strat_train_set.drop(\"median_house_value\", axis=1) # drop labels for training set\n",
"housing_labels = strat_train_set[\"median_house_value\"].copy()"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"sample_incomplete_rows = housing[housing.isnull().any(axis=1)].head()\n",
"sample_incomplete_rows"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"sample_incomplete_rows.dropna(subset=[\"total_bedrooms\"]) # option 1"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"sample_incomplete_rows.drop(\"total_bedrooms\", axis=1) # option 2"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
"median = housing[\"total_bedrooms\"].median()\n",
"sample_incomplete_rows[\"total_bedrooms\"].fillna(median, inplace=True) # option 3\n",
"sample_incomplete_rows"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.preprocessing import Imputer\n",
"\n",
"imputer = Imputer(strategy=\"median\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Remove the text attribute because median can only be calculated on numerical attributes:"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"housing_num = housing.drop(\"ocean_proximity\", axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"imputer.fit(housing_num)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"imputer.statistics_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check that this is the same as manually computing the median of each attribute:"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
"housing_num.median().values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Transform the training set:"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"X = imputer.transform(housing_num)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"housing_tr = pd.DataFrame(X, columns=housing_num.columns,\n",
" index = list(housing.index.values))"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"housing_tr.loc[sample_incomplete_rows.index.values]"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"imputer.strategy"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
"housing_tr = pd.DataFrame(X, columns=housing_num.columns)\n",
"housing_tr.head()"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.preprocessing import LabelEncoder\n",
"\n",
"encoder = LabelEncoder()\n",
"housing_cat = housing[\"ocean_proximity\"]\n",
"housing_cat_encoded = encoder.fit_transform(housing_cat)\n",
"housing_cat_encoded"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [],
"source": [
"print(encoder.classes_)"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.preprocessing import OneHotEncoder\n",
"\n",
"encoder = OneHotEncoder()\n",
"housing_cat_1hot = encoder.fit_transform(housing_cat_encoded.reshape(-1,1))\n",
"housing_cat_1hot"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"housing_cat_1hot.toarray()"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.preprocessing import LabelBinarizer\n",
"\n",
"encoder = LabelBinarizer()\n",
"housing_cat_1hot = encoder.fit_transform(housing_cat)\n",
"housing_cat_1hot"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.base import BaseEstimator, TransformerMixin\n",
"\n",
"# column index\n",
"rooms_ix, bedrooms_ix, population_ix, household_ix = 3, 4, 5, 6\n",
"\n",
"class CombinedAttributesAdder(BaseEstimator, TransformerMixin):\n",
" def __init__(self, add_bedrooms_per_room = True): # no *args or **kargs\n",
" self.add_bedrooms_per_room = add_bedrooms_per_room\n",
" def fit(self, X, y=None):\n",
" return self # nothing else to do\n",
" def transform(self, X, y=None):\n",
" rooms_per_household = X[:, rooms_ix] / X[:, household_ix]\n",
" population_per_household = X[:, population_ix] / X[:, household_ix]\n",
" if self.add_bedrooms_per_room:\n",
" bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]\n",
" return np.c_[X, rooms_per_household, population_per_household,\n",
" bedrooms_per_room]\n",
" else:\n",
" return np.c_[X, rooms_per_household, population_per_household]\n",
"\n",
"attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)\n",
"housing_extra_attribs = attr_adder.transform(housing.values)"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
"housing_extra_attribs = pd.DataFrame(housing_extra_attribs, columns=list(housing.columns)+[\"rooms_per_household\", \"population_per_household\"])\n",
"housing_extra_attribs.head()"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.pipeline import Pipeline\n",
"from sklearn.preprocessing import StandardScaler\n",
"\n",
"num_pipeline = Pipeline([\n",
" ('imputer', Imputer(strategy=\"median\")),\n",
" ('attribs_adder', CombinedAttributesAdder()),\n",
" ('std_scaler', StandardScaler()),\n",
" ])\n",
"\n",
"housing_num_tr = num_pipeline.fit_transform(housing_num)"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [],
"source": [
"housing_num_tr"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.base import BaseEstimator, TransformerMixin\n",
"\n",
"# Create a class to select numerical or categorical columns \n",
"# since Scikit-Learn doesn't handle DataFrames yet\n",
"class DataFrameSelector(BaseEstimator, TransformerMixin):\n",
" def __init__(self, attribute_names):\n",
" self.attribute_names = attribute_names\n",
" def fit(self, X, y=None):\n",
" return self\n",
" def transform(self, X):\n",
" return X[self.attribute_names].values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Important note**: the `LabelEncoder` and `LabelBinarizer` classes were designed for preprocessing labels, not input features, so their `fit()` and `fit_transform()` methods only accept one parameter `y` instead of two parameters `X` and `y`. The proper way to convert categorical input features to one-hot vectors should be to use the `OneHotEncoder` class, but unfortunately it does not work with string categories, only integer categories (people are working on it, see [Pull Request 7327](https://github.com/scikit-learn/scikit-learn/pull/7327)). In the meantime, one workaround was to use the `LabelBinarizer` class, as shown in the book. Unfortunately, since Scikit-Learn 0.19.0, pipelines now expect each estimator to have a `fit()` or `fit_transform()` method with two parameters `X` and `y`, so the code shown in the book won't work if you are using Scikit-Learn 0.19.0 (and possibly later as well). A temporary workaround (until PR 7327 is finished and you can use a `OneHotEncoder`) is to create a small wrapper class around the `LabelBinarizer` class, to fix its `fit_transform()` method, like this:"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class PipelineFriendlyLabelBinarizer(LabelBinarizer):\n",
" def fit_transform(self, X, y=None):\n",
" return super(PipelineFriendlyLabelBinarizer, self).fit_transform(X)"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"num_attribs = list(housing_num)\n",
"cat_attribs = [\"ocean_proximity\"]\n",
"\n",
"num_pipeline = Pipeline([\n",
" ('selector', DataFrameSelector(num_attribs)),\n",
" ('imputer', Imputer(strategy=\"median\")),\n",
" ('attribs_adder', CombinedAttributesAdder()),\n",
" ('std_scaler', StandardScaler()),\n",
" ])\n",
"\n",
"cat_pipeline = Pipeline([\n",
" ('selector', DataFrameSelector(cat_attribs)),\n",
" ('label_binarizer', PipelineFriendlyLabelBinarizer()),\n",
" ])"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.pipeline import FeatureUnion\n",
"\n",
"full_pipeline = FeatureUnion(transformer_list=[\n",
" (\"num_pipeline\", num_pipeline),\n",
" (\"cat_pipeline\", cat_pipeline),\n",
" ])"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [],
"source": [
"housing_prepared = full_pipeline.fit_transform(housing)\n",
"housing_prepared"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [],
"source": [
"housing_prepared.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Select and train a model "
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.linear_model import LinearRegression\n",
"\n",
"lin_reg = LinearRegression()\n",
"lin_reg.fit(housing_prepared, housing_labels)"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
"# let's try the full pipeline on a few training instances\n",
"some_data = housing.iloc[:5]\n",
"some_labels = housing_labels.iloc[:5]\n",
"some_data_prepared = full_pipeline.transform(some_data)\n",
"\n",
"print(\"Predictions:\", lin_reg.predict(some_data_prepared))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Compare against the actual values:"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"print(\"Labels:\", list(some_labels))"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [],
"source": [
"some_data_prepared"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import mean_squared_error\n",
"\n",
"housing_predictions = lin_reg.predict(housing_prepared)\n",
"lin_mse = mean_squared_error(housing_labels, housing_predictions)\n",
"lin_rmse = np.sqrt(lin_mse)\n",
"lin_rmse"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import mean_absolute_error\n",
"\n",
"lin_mae = mean_absolute_error(housing_labels, housing_predictions)\n",
"lin_mae"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.tree import DecisionTreeRegressor\n",
"\n",
"tree_reg = DecisionTreeRegressor(random_state=42)\n",
"tree_reg.fit(housing_prepared, housing_labels)"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [],
"source": [
"housing_predictions = tree_reg.predict(housing_prepared)\n",
"tree_mse = mean_squared_error(housing_labels, housing_predictions)\n",
"tree_rmse = np.sqrt(tree_mse)\n",
"tree_rmse"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Fine-tune your model"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.model_selection import cross_val_score\n",
"\n",
"scores = cross_val_score(tree_reg, housing_prepared, housing_labels,\n",
" scoring=\"neg_mean_squared_error\", cv=10)\n",
"tree_rmse_scores = np.sqrt(-scores)"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [],
"source": [
"def display_scores(scores):\n",
" print(\"Scores:\", scores)\n",
" print(\"Mean:\", scores.mean())\n",
" print(\"Standard deviation:\", scores.std())\n",
"\n",
"display_scores(tree_rmse_scores)"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [],
"source": [
"lin_scores = cross_val_score(lin_reg, housing_prepared, housing_labels,\n",
" scoring=\"neg_mean_squared_error\", cv=10)\n",
"lin_rmse_scores = np.sqrt(-lin_scores)\n",
"display_scores(lin_rmse_scores)"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.ensemble import RandomForestRegressor\n",
"\n",
"forest_reg = RandomForestRegressor(random_state=42)\n",
"forest_reg.fit(housing_prepared, housing_labels)"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [],
"source": [
"housing_predictions = forest_reg.predict(housing_prepared)\n",
"forest_mse = mean_squared_error(housing_labels, housing_predictions)\n",
"forest_rmse = np.sqrt(forest_mse)\n",
"forest_rmse"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import cross_val_score\n",
"\n",
"forest_scores = cross_val_score(forest_reg, housing_prepared, housing_labels,\n",
" scoring=\"neg_mean_squared_error\", cv=10)\n",
"forest_rmse_scores = np.sqrt(-forest_scores)\n",
"display_scores(forest_rmse_scores)"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {},
"outputs": [],
"source": [
"scores = cross_val_score(lin_reg, housing_prepared, housing_labels, scoring=\"neg_mean_squared_error\", cv=10)\n",
"pd.Series(np.sqrt(-scores)).describe()"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.svm import SVR\n",
"\n",
"svm_reg = SVR(kernel=\"linear\")\n",
"svm_reg.fit(housing_prepared, housing_labels)\n",
"housing_predictions = svm_reg.predict(housing_prepared)\n",
"svm_mse = mean_squared_error(housing_labels, housing_predictions)\n",
"svm_rmse = np.sqrt(svm_mse)\n",
"svm_rmse"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import GridSearchCV\n",
"\n",
"param_grid = [\n",
" # try 12 (3×4) combinations of hyperparameters\n",
" {'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},\n",
" # then try 6 (2×3) combinations with bootstrap set as False\n",
" {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},\n",
" ]\n",
"\n",
"forest_reg = RandomForestRegressor(random_state=42)\n",
"# train across 5 folds, that's a total of (12+6)*5=90 rounds of training \n",
"grid_search = GridSearchCV(forest_reg, param_grid, cv=5,\n",
" scoring='neg_mean_squared_error')\n",
"grid_search.fit(housing_prepared, housing_labels)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The best hyperparameter combination found:"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {},
"outputs": [],
"source": [
"grid_search.best_params_"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [],
"source": [
"grid_search.best_estimator_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's look at the score of each hyperparameter combination tested during the grid search:"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {},
"outputs": [],
"source": [
"cvres = grid_search.cv_results_\n",
"for mean_score, params in zip(cvres[\"mean_test_score\"], cvres[\"params\"]):\n",
" print(np.sqrt(-mean_score), params)"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {},
"outputs": [],
"source": [
"pd.DataFrame(grid_search.cv_results_)"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import RandomizedSearchCV\n",
"from scipy.stats import randint\n",
"\n",
"param_distribs = {\n",
" 'n_estimators': randint(low=1, high=200),\n",
" 'max_features': randint(low=1, high=8),\n",
" }\n",
"\n",
"forest_reg = RandomForestRegressor(random_state=42)\n",
"rnd_search = RandomizedSearchCV(forest_reg, param_distributions=param_distribs,\n",
" n_iter=10, cv=5, scoring='neg_mean_squared_error', random_state=42)\n",
"rnd_search.fit(housing_prepared, housing_labels)"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [],
"source": [
"cvres = rnd_search.cv_results_\n",
"for mean_score, params in zip(cvres[\"mean_test_score\"], cvres[\"params\"]):\n",
" print(np.sqrt(-mean_score), params)"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [],
"source": [
"feature_importances = grid_search.best_estimator_.feature_importances_\n",
"feature_importances"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [],
"source": [
"extra_attribs = [\"rooms_per_hhold\", \"pop_per_hhold\", \"bedrooms_per_room\"]\n",
"cat_one_hot_attribs = list(encoder.classes_)\n",
"attributes = num_attribs + extra_attribs + cat_one_hot_attribs\n",
"sorted(zip(feature_importances, attributes), reverse=True)"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"final_model = grid_search.best_estimator_\n",
"\n",
"X_test = strat_test_set.drop(\"median_house_value\", axis=1)\n",
"y_test = strat_test_set[\"median_house_value\"].copy()\n",
"\n",
"X_test_prepared = full_pipeline.transform(X_test)\n",
"final_predictions = final_model.predict(X_test_prepared)\n",
"\n",
"final_mse = mean_squared_error(y_test, final_predictions)\n",
"final_rmse = np.sqrt(final_mse)"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [],
"source": [
"final_rmse"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Extra material"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## A full pipeline with both preparation and prediction"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {},
"outputs": [],
"source": [
"full_pipeline_with_predictor = Pipeline([\n",
" (\"preparation\", full_pipeline),\n",
" (\"linear\", LinearRegression())\n",
" ])\n",
"\n",
"full_pipeline_with_predictor.fit(housing, housing_labels)\n",
"full_pipeline_with_predictor.predict(some_data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model persistence using joblib"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"my_model = full_pipeline_with_predictor"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.externals import joblib\n",
"joblib.dump(my_model, \"my_model.pkl\") # DIFF\n",
"#...\n",
"my_model_loaded = joblib.load(\"my_model.pkl\") # DIFF"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example SciPy distributions for `RandomizedSearchCV`"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {},
"outputs": [],
"source": [
"from scipy.stats import geom, expon\n",
"geom_distrib=geom(0.5).rvs(10000, random_state=42)\n",
"expon_distrib=expon(scale=1).rvs(10000, random_state=42)\n",
"plt.hist(geom_distrib, bins=50)\n",
"plt.show()\n",
"plt.hist(expon_distrib, bins=50)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Exercise solutions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1."
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"Question: Try a Support Vector Machine regressor (`sklearn.svm.SVR`), with various hyperparameters such as `kernel=\"linear\"` (with various values for the `C` hyperparameter) or `kernel=\"rbf\"` (with various values for the `C` and `gamma` hyperparameters). Don't worry about what these hyperparameters mean for now. How does the best `SVR` predictor perform?"
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import GridSearchCV\n",
"\n",
"param_grid = [\n",
" {'kernel': ['linear'], 'C': [10., 30., 100., 300., 1000., 3000., 10000., 30000.0]},\n",
" {'kernel': ['rbf'], 'C': [1.0, 3.0, 10., 30., 100., 300., 1000.0],\n",
" 'gamma': [0.01, 0.03, 0.1, 0.3, 1.0, 3.0]},\n",
" ]\n",
"\n",
"svm_reg = SVR()\n",
"grid_search = GridSearchCV(svm_reg, param_grid, cv=5, scoring='neg_mean_squared_error', verbose=2, n_jobs=4)\n",
"grid_search.fit(housing_prepared, housing_labels)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The best model achieves the following score (evaluated using 5-fold cross validation):"
]
},
{
"cell_type": "code",
"execution_count": 104,
"metadata": {},
"outputs": [],
"source": [
"negative_mse = grid_search.best_score_\n",
"rmse = np.sqrt(-negative_mse)\n",
"rmse"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"That's much worse than the `RandomForestRegressor`. Let's check the best hyperparameters found:"
]
},
{
"cell_type": "code",
"execution_count": 105,
"metadata": {},
"outputs": [],
"source": [
"grid_search.best_params_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The linear kernel seems better than the RBF kernel. Notice that the value of `C` is the maximum tested value. When this happens you definitely want to launch the grid search again with higher values for `C` (removing the smallest values), because it is likely that higher values of `C` will be better."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Question: Try replacing `GridSearchCV` with `RandomizedSearchCV`."
]
},
{
"cell_type": "code",
"execution_count": 106,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import RandomizedSearchCV\n",
"from scipy.stats import expon, reciprocal\n",
"\n",
"# see https://docs.scipy.org/doc/scipy-0.19.0/reference/stats.html\n",
"# for `expon()` and `reciprocal()` documentation and more probability distribution functions.\n",
"\n",
"# Note: gamma is ignored when kernel is \"linear\"\n",
"param_distribs = {\n",
" 'kernel': ['linear', 'rbf'],\n",
" 'C': reciprocal(20, 200000),\n",
" 'gamma': expon(scale=1.0),\n",
" }\n",
"\n",
"svm_reg = SVR()\n",
"rnd_search = RandomizedSearchCV(svm_reg, param_distributions=param_distribs,\n",
" n_iter=50, cv=5, scoring='neg_mean_squared_error',\n",
" verbose=2, n_jobs=4, random_state=42)\n",
"rnd_search.fit(housing_prepared, housing_labels)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The best model achieves the following score (evaluated using 5-fold cross validation):"
]
},
{
"cell_type": "code",
"execution_count": 107,
"metadata": {},
"outputs": [],
"source": [
"negative_mse = rnd_search.best_score_\n",
"rmse = np.sqrt(-negative_mse)\n",
"rmse"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now this is much closer to the performance of the `RandomForestRegressor` (but not quite there yet). Let's check the best hyperparameters found:"
]
},
{
"cell_type": "code",
"execution_count": 108,
"metadata": {},
"outputs": [],
"source": [
"rnd_search.best_params_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This time the search found a good set of hyperparameters for the RBF kernel. Randomized search tends to find better hyperparameters than grid search in the same amount of time."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's look at the exponential distribution we used, with `scale=1.0`. Note that some samples are much larger or smaller than 1.0, but when you look at the log of the distribution, you can see that most values are actually concentrated roughly in the range of exp(-2) to exp(+2), which is about 0.1 to 7.4."
]
},
{
"cell_type": "code",
"execution_count": 109,
"metadata": {},
"outputs": [],
"source": [
"expon_distrib = expon(scale=1.)\n",
"samples = expon_distrib.rvs(10000, random_state=42)\n",
"plt.figure(figsize=(10, 4))\n",
"plt.subplot(121)\n",
"plt.title(\"Exponential distribution (scale=1.0)\")\n",
"plt.hist(samples, bins=50)\n",
"plt.subplot(122)\n",
"plt.title(\"Log of this distribution\")\n",
"plt.hist(np.log(samples), bins=50)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The distribution we used for `C` looks quite different: the scale of the samples is picked from a uniform distribution within a given range, which is why the right graph, which represents the log of the samples, looks roughly constant. This distribution is useful when you don't have a clue of what the target scale is:"
]
},
{
"cell_type": "code",
"execution_count": 110,
"metadata": {},
"outputs": [],
"source": [
"reciprocal_distrib = reciprocal(20, 200000)\n",
"samples = reciprocal_distrib.rvs(10000, random_state=42)\n",
"plt.figure(figsize=(10, 4))\n",
"plt.subplot(121)\n",
"plt.title(\"Reciprocal distribution (scale=1.0)\")\n",
"plt.hist(samples, bins=50)\n",
"plt.subplot(122)\n",
"plt.title(\"Log of this distribution\")\n",
"plt.hist(np.log(samples), bins=50)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The reciprocal distribution is useful when you have no idea what the scale of the hyperparameter should be (indeed, as you can see on the figure on the right, all scales are equally likely, within the given range), whereas the exponential distribution is best when you know (more or less) what the scale of the hyperparameter should be."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Question: Try adding a transformer in the preparation pipeline to select only the most important attributes."
]
},
{
"cell_type": "code",
"execution_count": 111,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from sklearn.base import BaseEstimator, TransformerMixin\n",
"\n",
"def indices_of_top_k(arr, k):\n",
" return np.sort(np.argpartition(np.array(arr), -k)[-k:])\n",
"\n",
"class TopFeatureSelector(BaseEstimator, TransformerMixin):\n",
" def __init__(self, feature_importances, k):\n",
" self.feature_importances = feature_importances\n",
" self.k = k\n",
" def fit(self, X, y=None):\n",
" self.feature_indices_ = indices_of_top_k(self.feature_importances, self.k)\n",
" return self\n",
" def transform(self, X):\n",
" return X[:, self.feature_indices_]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: this feature selector assumes that you have already computed the feature importances somehow (for example using a `RandomForestRegressor`). You may be tempted to compute them directly in the `TopFeatureSelector`'s `fit()` method, however this would likely slow down grid/randomized search since the feature importances would have to be computed for every hyperparameter combination (unless you implement some sort of cache)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's define the number of top features we want to keep:"
]
},
{
"cell_type": "code",
"execution_count": 112,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"k = 5"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's look for the indices of the top k features:"
]
},
{
"cell_type": "code",
"execution_count": 113,
"metadata": {},
"outputs": [],
"source": [
"top_k_feature_indices = indices_of_top_k(feature_importances, k)\n",
"top_k_feature_indices"
]
},
{
"cell_type": "code",
"execution_count": 114,
"metadata": {},
"outputs": [],
"source": [
"np.array(attributes)[top_k_feature_indices]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's double check that these are indeed the top k features:"
]
},
{
"cell_type": "code",
"execution_count": 115,
"metadata": {},
"outputs": [],
"source": [
"sorted(zip(feature_importances, attributes), reverse=True)[:k]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Looking good... Now let's create a new pipeline that runs the previously defined preparation pipeline, and adds top k feature selection:"
]
},
{
"cell_type": "code",
"execution_count": 116,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"preparation_and_feature_selection_pipeline = Pipeline([\n",
" ('preparation', full_pipeline),\n",
" ('feature_selection', TopFeatureSelector(feature_importances, k))\n",
"])"
]
},
{
"cell_type": "code",
"execution_count": 117,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"housing_prepared_top_k_features = preparation_and_feature_selection_pipeline.fit_transform(housing)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's look at the features of the first 3 instances:"
]
},
{
"cell_type": "code",
"execution_count": 118,
"metadata": {},
"outputs": [],
"source": [
"housing_prepared_top_k_features[0:3]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's double check that these are indeed the top k features:"
]
},
{
"cell_type": "code",
"execution_count": 119,
"metadata": {},
"outputs": [],
"source": [
"housing_prepared[0:3, top_k_feature_indices]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Works great! :)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Question: Try creating a single pipeline that does the full data preparation plus the final prediction."
]
},
{
"cell_type": "code",
"execution_count": 120,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"prepare_select_and_predict_pipeline = Pipeline([\n",
" ('preparation', full_pipeline),\n",
" ('feature_selection', TopFeatureSelector(feature_importances, k)),\n",
" ('svm_reg', SVR(**rnd_search.best_params_))\n",
"])"
]
},
{
"cell_type": "code",
"execution_count": 121,
"metadata": {},
"outputs": [],
"source": [
"prepare_select_and_predict_pipeline.fit(housing, housing_labels)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's try the full pipeline on a few instances:"
]
},
{
"cell_type": "code",
"execution_count": 122,
"metadata": {},
"outputs": [],
"source": [
"some_data = housing.iloc[:4]\n",
"some_labels = housing_labels.iloc[:4]\n",
"\n",
"print(\"Predictions:\\t\", prepare_select_and_predict_pipeline.predict(some_data))\n",
"print(\"Labels:\\t\\t\", list(some_labels))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Well, the full pipeline seems to work fine. Of course, the predictions are not fantastic: they would be better if we used the best `RandomForestRegressor` that we found earlier, rather than the best `SVR`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Question: Automatically explore some preparation options using `GridSearchCV`."
]
},
{
"cell_type": "code",
"execution_count": 123,
"metadata": {},
"outputs": [],
"source": [
"param_grid = [\n",
" {'preparation__num_pipeline__imputer__strategy': ['mean', 'median', 'most_frequent'],\n",
" 'feature_selection__k': [3, 4, 5, 6, 7]}\n",
"]\n",
"\n",
"grid_search_prep = GridSearchCV(prepare_select_and_predict_pipeline, param_grid, cv=5,\n",
" scoring='neg_mean_squared_error', verbose=2, n_jobs=4)\n",
"grid_search_prep.fit(housing, housing_labels)"
]
},
{
"cell_type": "code",
"execution_count": 124,
"metadata": {},
"outputs": [],
"source": [
"grid_search_prep.best_params_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Great! It seems that we had the right imputer strategy (mean), and apparently only the top 7 features are useful (out of 9), the last 2 seem to just add some noise."
]
},
{
"cell_type": "code",
"execution_count": 125,
"metadata": {},
"outputs": [],
"source": [
"housing.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Congratulations! You already know quite a lot about Machine Learning. :)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
},
"nav_menu": {
"height": "279px",
"width": "309px"
},
"toc": {
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 6,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 1
}