handson-ml/01_the_machine_learning_lan...

745 lines
22 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Chapter 1 The Machine Learning landscape**\n",
"\n",
"_This is the code used to generate some of the figures in chapter 1._"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"# To support both python 2 and python 3\n",
"from __future__ import division, print_function, unicode_literals\n",
"\n",
"# Common imports\n",
"import numpy as np\n",
"import os\n",
"\n",
"# to make this notebook's output stable across runs\n",
"np.random.seed(42)\n",
"\n",
"# To plot pretty figures\n",
"%matplotlib inline\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"plt.rcParams['axes.labelsize'] = 14\n",
"plt.rcParams['xtick.labelsize'] = 12\n",
"plt.rcParams['ytick.labelsize'] = 12\n",
"\n",
"# Where to save the figures\n",
"PROJECT_ROOT_DIR = \".\"\n",
"CHAPTER_ID = \"fundamentals\"\n",
"\n",
"def save_fig(fig_id, tight_layout=True):\n",
" path = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id + \".png\")\n",
" print(\"Saving figure\", fig_id)\n",
" if tight_layout:\n",
" plt.tight_layout()\n",
" plt.savefig(path, format='png', dpi=300)\n",
"\n",
"# Ignore useless warnings (see SciPy issue #5998)\n",
"import warnings\n",
"warnings.filterwarnings(action=\"ignore\", message=\"^internal gelsd\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Code example 1-1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This function just merges the OECD's life satisfaction data and the IMF's GDP per capita data. It's a bit too long and boring and it's not specific to Machine Learning, which is why I left it out of the book."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def prepare_country_stats(oecd_bli, gdp_per_capita):\n",
" oecd_bli = oecd_bli[oecd_bli[\"INEQUALITY\"]==\"TOT\"]\n",
" oecd_bli = oecd_bli.pivot(index=\"Country\", columns=\"Indicator\", values=\"Value\")\n",
" gdp_per_capita.rename(columns={\"2015\": \"GDP per capita\"}, inplace=True)\n",
" gdp_per_capita.set_index(\"Country\", inplace=True)\n",
" full_country_stats = pd.merge(left=oecd_bli, right=gdp_per_capita,\n",
" left_index=True, right_index=True)\n",
" full_country_stats.sort_values(by=\"GDP per capita\", inplace=True)\n",
" remove_indices = [0, 1, 6, 8, 33, 34, 35]\n",
" keep_indices = list(set(range(36)) - set(remove_indices))\n",
" return full_country_stats[[\"GDP per capita\", 'Life satisfaction']].iloc[keep_indices]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The code in the book expects the data files to be located in the current directory. I just tweaked it here to fetch the files in datasets/lifesat."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"datapath = os.path.join(\"datasets\", \"lifesat\", \"\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# Code example\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import sklearn.linear_model\n",
"\n",
"# Load the data\n",
"oecd_bli = pd.read_csv(datapath + \"oecd_bli_2015.csv\", thousands=',')\n",
"gdp_per_capita = pd.read_csv(datapath + \"gdp_per_capita.csv\",thousands=',',delimiter='\\t',\n",
" encoding='latin1', na_values=\"n/a\")\n",
"\n",
"# Prepare the data\n",
"country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)\n",
"X = np.c_[country_stats[\"GDP per capita\"]]\n",
"y = np.c_[country_stats[\"Life satisfaction\"]]\n",
"\n",
"# Visualize the data\n",
"country_stats.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction')\n",
"plt.show()\n",
"\n",
"# Select a linear model\n",
"model = sklearn.linear_model.LinearRegression()\n",
"\n",
"# Train the model\n",
"model.fit(X, y)\n",
"\n",
"# Make a prediction for Cyprus\n",
"X_new = [[22587]] # Cyprus' GDP per capita\n",
"print(model.predict(X_new)) # outputs [[ 5.96242338]]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Note: you can ignore the rest of this notebook, it just generates many of the figures in chapter 1."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Load and prepare Life satisfaction data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you want, you can get fresh data from the OECD's website.\n",
"Download the CSV from http://stats.oecd.org/index.aspx?DataSetCode=BLI\n",
"and save it to `datasets/lifesat/`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"oecd_bli = pd.read_csv(datapath + \"oecd_bli_2015.csv\", thousands=',')\n",
"oecd_bli = oecd_bli[oecd_bli[\"INEQUALITY\"]==\"TOT\"]\n",
"oecd_bli = oecd_bli.pivot(index=\"Country\", columns=\"Indicator\", values=\"Value\")\n",
"oecd_bli.head(2)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"oecd_bli[\"Life satisfaction\"].head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Load and prepare GDP per capita data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Just like above, you can update the GDP per capita data if you want. Just download data from http://goo.gl/j1MSKe (=> imf.org) and save it to `datasets/lifesat/`."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"gdp_per_capita = pd.read_csv(datapath+\"gdp_per_capita.csv\", thousands=',', delimiter='\\t',\n",
" encoding='latin1', na_values=\"n/a\")\n",
"gdp_per_capita.rename(columns={\"2015\": \"GDP per capita\"}, inplace=True)\n",
"gdp_per_capita.set_index(\"Country\", inplace=True)\n",
"gdp_per_capita.head(2)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"full_country_stats = pd.merge(left=oecd_bli, right=gdp_per_capita, left_index=True, right_index=True)\n",
"full_country_stats.sort_values(by=\"GDP per capita\", inplace=True)\n",
"full_country_stats"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"full_country_stats[[\"GDP per capita\", 'Life satisfaction']].loc[\"United States\"]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"remove_indices = [0, 1, 6, 8, 33, 34, 35]\n",
"keep_indices = list(set(range(36)) - set(remove_indices))\n",
"\n",
"sample_data = full_country_stats[[\"GDP per capita\", 'Life satisfaction']].iloc[keep_indices]\n",
"missing_data = full_country_stats[[\"GDP per capita\", 'Life satisfaction']].iloc[remove_indices]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(5,3))\n",
"plt.axis([0, 60000, 0, 10])\n",
"position_text = {\n",
" \"Hungary\": (5000, 1),\n",
" \"Korea\": (18000, 1.7),\n",
" \"France\": (29000, 2.4),\n",
" \"Australia\": (40000, 3.0),\n",
" \"United States\": (52000, 3.8),\n",
"}\n",
"for country, pos_text in position_text.items():\n",
" pos_data_x, pos_data_y = sample_data.loc[country]\n",
" country = \"U.S.\" if country == \"United States\" else country\n",
" plt.annotate(country, xy=(pos_data_x, pos_data_y), xytext=pos_text,\n",
" arrowprops=dict(facecolor='black', width=0.5, shrink=0.1, headwidth=5))\n",
" plt.plot(pos_data_x, pos_data_y, \"ro\")\n",
"save_fig('money_happy_scatterplot')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"sample_data.to_csv(os.path.join(\"datasets\", \"lifesat\", \"lifesat.csv\"))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"sample_data.loc[list(position_text.keys())]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(5,3))\n",
"plt.axis([0, 60000, 0, 10])\n",
"X=np.linspace(0, 60000, 1000)\n",
"plt.plot(X, 2*X/100000, \"r\")\n",
"plt.text(40000, 2.7, r\"$\\theta_0 = 0$\", fontsize=14, color=\"r\")\n",
"plt.text(40000, 1.8, r\"$\\theta_1 = 2 \\times 10^{-5}$\", fontsize=14, color=\"r\")\n",
"plt.plot(X, 8 - 5*X/100000, \"g\")\n",
"plt.text(5000, 9.1, r\"$\\theta_0 = 8$\", fontsize=14, color=\"g\")\n",
"plt.text(5000, 8.2, r\"$\\theta_1 = -5 \\times 10^{-5}$\", fontsize=14, color=\"g\")\n",
"plt.plot(X, 4 + 5*X/100000, \"b\")\n",
"plt.text(5000, 3.5, r\"$\\theta_0 = 4$\", fontsize=14, color=\"b\")\n",
"plt.text(5000, 2.6, r\"$\\theta_1 = 5 \\times 10^{-5}$\", fontsize=14, color=\"b\")\n",
"save_fig('tweaking_model_params_plot')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"from sklearn import linear_model\n",
"lin1 = linear_model.LinearRegression()\n",
"Xsample = np.c_[sample_data[\"GDP per capita\"]]\n",
"ysample = np.c_[sample_data[\"Life satisfaction\"]]\n",
"lin1.fit(Xsample, ysample)\n",
"t0, t1 = lin1.intercept_[0], lin1.coef_[0][0]\n",
"t0, t1"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(5,3))\n",
"plt.axis([0, 60000, 0, 10])\n",
"X=np.linspace(0, 60000, 1000)\n",
"plt.plot(X, t0 + t1*X, \"b\")\n",
"plt.text(5000, 3.1, r\"$\\theta_0 = 4.85$\", fontsize=14, color=\"b\")\n",
"plt.text(5000, 2.2, r\"$\\theta_1 = 4.91 \\times 10^{-5}$\", fontsize=14, color=\"b\")\n",
"save_fig('best_fit_model_plot')\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"cyprus_gdp_per_capita = gdp_per_capita.loc[\"Cyprus\"][\"GDP per capita\"]\n",
"print(cyprus_gdp_per_capita)\n",
"cyprus_predicted_life_satisfaction = lin1.predict([[cyprus_gdp_per_capita]])[0][0]\n",
"cyprus_predicted_life_satisfaction"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(5,3), s=1)\n",
"X=np.linspace(0, 60000, 1000)\n",
"plt.plot(X, t0 + t1*X, \"b\")\n",
"plt.axis([0, 60000, 0, 10])\n",
"plt.text(5000, 7.5, r\"$\\theta_0 = 4.85$\", fontsize=14, color=\"b\")\n",
"plt.text(5000, 6.6, r\"$\\theta_1 = 4.91 \\times 10^{-5}$\", fontsize=14, color=\"b\")\n",
"plt.plot([cyprus_gdp_per_capita, cyprus_gdp_per_capita], [0, cyprus_predicted_life_satisfaction], \"r--\")\n",
"plt.text(25000, 5.0, r\"Prediction = 5.96\", fontsize=14, color=\"b\")\n",
"plt.plot(cyprus_gdp_per_capita, cyprus_predicted_life_satisfaction, \"ro\")\n",
"save_fig('cyprus_prediction_plot')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"sample_data[7:10]"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"(5.1+5.7+6.5)/3"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"backup = oecd_bli, gdp_per_capita\n",
"\n",
"def prepare_country_stats(oecd_bli, gdp_per_capita):\n",
" oecd_bli = oecd_bli[oecd_bli[\"INEQUALITY\"]==\"TOT\"]\n",
" oecd_bli = oecd_bli.pivot(index=\"Country\", columns=\"Indicator\", values=\"Value\")\n",
" gdp_per_capita.rename(columns={\"2015\": \"GDP per capita\"}, inplace=True)\n",
" gdp_per_capita.set_index(\"Country\", inplace=True)\n",
" full_country_stats = pd.merge(left=oecd_bli, right=gdp_per_capita,\n",
" left_index=True, right_index=True)\n",
" full_country_stats.sort_values(by=\"GDP per capita\", inplace=True)\n",
" remove_indices = [0, 1, 6, 8, 33, 34, 35]\n",
" keep_indices = list(set(range(36)) - set(remove_indices))\n",
" return full_country_stats[[\"GDP per capita\", 'Life satisfaction']].iloc[keep_indices]"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# Code example\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import sklearn\n",
"\n",
"# Load the data\n",
"oecd_bli = pd.read_csv(datapath + \"oecd_bli_2015.csv\", thousands=',')\n",
"gdp_per_capita = pd.read_csv(datapath + \"gdp_per_capita.csv\",thousands=',',delimiter='\\t',\n",
" encoding='latin1', na_values=\"n/a\")\n",
"\n",
"# Prepare the data\n",
"country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)\n",
"X = np.c_[country_stats[\"GDP per capita\"]]\n",
"y = np.c_[country_stats[\"Life satisfaction\"]]\n",
"\n",
"# Visualize the data\n",
"country_stats.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction')\n",
"plt.show()\n",
"\n",
"# Select a linear model\n",
"model = sklearn.linear_model.LinearRegression()\n",
"\n",
"# Train the model\n",
"model.fit(X, y)\n",
"\n",
"# Make a prediction for Cyprus\n",
"X_new = [[22587]] # Cyprus' GDP per capita\n",
"print(model.predict(X_new)) # outputs [[ 5.96242338]]"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"oecd_bli, gdp_per_capita = backup"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"missing_data"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"position_text2 = {\n",
" \"Brazil\": (1000, 9.0),\n",
" \"Mexico\": (11000, 9.0),\n",
" \"Chile\": (25000, 9.0),\n",
" \"Czech Republic\": (35000, 9.0),\n",
" \"Norway\": (60000, 3),\n",
" \"Switzerland\": (72000, 3.0),\n",
" \"Luxembourg\": (90000, 3.0),\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(8,3))\n",
"plt.axis([0, 110000, 0, 10])\n",
"\n",
"for country, pos_text in position_text2.items():\n",
" pos_data_x, pos_data_y = missing_data.loc[country]\n",
" plt.annotate(country, xy=(pos_data_x, pos_data_y), xytext=pos_text,\n",
" arrowprops=dict(facecolor='black', width=0.5, shrink=0.1, headwidth=5))\n",
" plt.plot(pos_data_x, pos_data_y, \"rs\")\n",
"\n",
"X=np.linspace(0, 110000, 1000)\n",
"plt.plot(X, t0 + t1*X, \"b:\")\n",
"\n",
"lin_reg_full = linear_model.LinearRegression()\n",
"Xfull = np.c_[full_country_stats[\"GDP per capita\"]]\n",
"yfull = np.c_[full_country_stats[\"Life satisfaction\"]]\n",
"lin_reg_full.fit(Xfull, yfull)\n",
"\n",
"t0full, t1full = lin_reg_full.intercept_[0], lin_reg_full.coef_[0][0]\n",
"X = np.linspace(0, 110000, 1000)\n",
"plt.plot(X, t0full + t1full * X, \"k\")\n",
"\n",
"save_fig('representative_training_data_scatterplot')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"full_country_stats.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(8,3))\n",
"plt.axis([0, 110000, 0, 10])\n",
"\n",
"from sklearn import preprocessing\n",
"from sklearn import pipeline\n",
"\n",
"poly = preprocessing.PolynomialFeatures(degree=60, include_bias=False)\n",
"scaler = preprocessing.StandardScaler()\n",
"lin_reg2 = linear_model.LinearRegression()\n",
"\n",
"pipeline_reg = pipeline.Pipeline([('poly', poly), ('scal', scaler), ('lin', lin_reg2)])\n",
"pipeline_reg.fit(Xfull, yfull)\n",
"curve = pipeline_reg.predict(X[:, np.newaxis])\n",
"plt.plot(X, curve)\n",
"save_fig('overfitting_model_plot')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"full_country_stats.loc[[c for c in full_country_stats.index if \"W\" in c.upper()]][\"Life satisfaction\"]"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"gdp_per_capita.loc[[c for c in gdp_per_capita.index if \"W\" in c.upper()]].head()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(8,3))\n",
"\n",
"plt.xlabel(\"GDP per capita\")\n",
"plt.ylabel('Life satisfaction')\n",
"\n",
"plt.plot(list(sample_data[\"GDP per capita\"]), list(sample_data[\"Life satisfaction\"]), \"bo\")\n",
"plt.plot(list(missing_data[\"GDP per capita\"]), list(missing_data[\"Life satisfaction\"]), \"rs\")\n",
"\n",
"X = np.linspace(0, 110000, 1000)\n",
"plt.plot(X, t0full + t1full * X, \"r--\", label=\"Linear model on all data\")\n",
"plt.plot(X, t0 + t1*X, \"b:\", label=\"Linear model on partial data\")\n",
"\n",
"ridge = linear_model.Ridge(alpha=10**9.5)\n",
"Xsample = np.c_[sample_data[\"GDP per capita\"]]\n",
"ysample = np.c_[sample_data[\"Life satisfaction\"]]\n",
"ridge.fit(Xsample, ysample)\n",
"t0ridge, t1ridge = ridge.intercept_[0], ridge.coef_[0][0]\n",
"plt.plot(X, t0ridge + t1ridge * X, \"b\", label=\"Regularized linear model on partial data\")\n",
"\n",
"plt.legend(loc=\"lower right\")\n",
"plt.axis([0, 110000, 0, 10])\n",
"save_fig('ridge_model_plot')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"backup = oecd_bli, gdp_per_capita\n",
"\n",
"def prepare_country_stats(oecd_bli, gdp_per_capita):\n",
" return sample_data"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"# Replace this linear model:\n",
"model = sklearn.linear_model.LinearRegression()"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"# with this k-neighbors regression model:\n",
"model = sklearn.neighbors.KNeighborsRegressor(n_neighbors=3)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"X = np.c_[country_stats[\"GDP per capita\"]]\n",
"y = np.c_[country_stats[\"Life satisfaction\"]]\n",
"\n",
"# Train the model\n",
"model.fit(X, y)\n",
"\n",
"# Make a prediction for Cyprus\n",
"X_new = np.array([[22587.0]]) # Cyprus' GDP per capita\n",
"print(model.predict(X_new)) # outputs [[ 5.76666667]]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"nav_menu": {},
"toc": {
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 6,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": true
},
"toc_position": {
"height": "616px",
"left": "0px",
"right": "20px",
"top": "106px",
"width": "213px"
}
},
"nbformat": 4,
"nbformat_minor": 1
}