handson-ml/09_up_and_running_with_tens...

3007 lines
76 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"**Chapter 9 Up and running with TensorFlow**"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"_This notebook contains all the sample code and solutions to the exercices in chapter 9._"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Setup"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"# To support both python 2 and python 3\n",
"from __future__ import division, print_function, unicode_literals\n",
"\n",
"# Common imports\n",
"import numpy as np\n",
"import numpy.random as rnd\n",
"import os\n",
"\n",
"# to make this notebook's output stable across runs\n",
"rnd.seed(42)\n",
"\n",
"# To plot pretty figures\n",
"%matplotlib inline\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"plt.rcParams['axes.labelsize'] = 14\n",
"plt.rcParams['xtick.labelsize'] = 12\n",
"plt.rcParams['ytick.labelsize'] = 12\n",
"\n",
"# Where to save the figures\n",
"PROJECT_ROOT_DIR = \".\"\n",
"CHAPTER_ID = \"tensorflow\"\n",
"\n",
"def save_fig(fig_id, tight_layout=True):\n",
" path = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id + \".png\")\n",
" print(\"Saving figure\", fig_id)\n",
" if tight_layout:\n",
" plt.tight_layout()\n",
" plt.savefig(path, format='png', dpi=300)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Creating and running a graph"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"import tensorflow as tf\n",
"\n",
"tf.reset_default_graph()\n",
"\n",
"x = tf.Variable(3, name=\"x\")\n",
"y = tf.Variable(4, name=\"y\")\n",
"f = x*x*y + y + 2"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"f"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"sess = tf.Session()\n",
"sess.run(x.initializer)\n",
"sess.run(y.initializer)\n",
"result = sess.run(f)\n",
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"sess.close()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" x.initializer.run()\n",
" y.initializer.run()\n",
" result = f.eval()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"result"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"init = tf.global_variables_initializer()\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" result = f.eval()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"result"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"init = tf.global_variables_initializer()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"sess = tf.InteractiveSession()\n",
"init.run()\n",
"result = f.eval()\n",
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"sess.close()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"result"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Managing graphs"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"x1 = tf.Variable(1)\n",
"x1.graph is tf.get_default_graph()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"graph = tf.Graph()\n",
"with graph.as_default():\n",
" x2 = tf.Variable(2)\n",
"\n",
"x2.graph is graph"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true,
"scrolled": true
},
"outputs": [],
"source": [
"x2.graph is tf.get_default_graph()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"w = tf.constant(3)\n",
"x = w + 2\n",
"y = x + 5\n",
"z = x * 3\n",
"\n",
"with tf.Session() as sess:\n",
" print(y.eval()) # 10\n",
" print(z.eval()) # 15"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" y_val, z_val = sess.run([y, z])\n",
" print(y_val) # 10\n",
" print(z_val) # 15"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Linear Regression"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## Using the Normal Equation"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"from sklearn.datasets import fetch_california_housing\n",
"\n",
"tf.reset_default_graph()\n",
"\n",
"housing = fetch_california_housing()\n",
"m, n = housing.data.shape\n",
"housing_data_plus_bias = np.c_[np.ones((m, 1)), housing.data]\n",
"\n",
"X = tf.constant(housing_data_plus_bias, dtype=tf.float32, name=\"X\")\n",
"y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name=\"y\")\n",
"XT = tf.transpose(X)\n",
"theta = tf.matmul(tf.matmul(tf.matrix_inverse(tf.matmul(XT, X)), XT), y)\n",
"\n",
"with tf.Session() as sess:\n",
" theta_value = theta.eval()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"theta_value"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Compare with pure NumPy"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"X = housing_data_plus_bias\n",
"y = housing.target.reshape(-1, 1)\n",
"theta_numpy = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)\n",
"\n",
"print(theta_numpy)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Compare with Scikit-Learn"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"from sklearn.linear_model import LinearRegression\n",
"lin_reg = LinearRegression()\n",
"lin_reg.fit(housing.data, housing.target.reshape(-1, 1))\n",
"\n",
"print(np.r_[lin_reg.intercept_.reshape(-1, 1), lin_reg.coef_.T])"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## Using Batch Gradient Descent"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Gradient Descent requires scaling the feature vectors first. We could do this using TF, but let's just use Scikit-Learn for now."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"from sklearn.preprocessing import StandardScaler\n",
"scaler = StandardScaler()\n",
"scaled_housing_data = scaler.fit_transform(housing.data)\n",
"scaled_housing_data_plus_bias = np.c_[np.ones((m, 1)), scaled_housing_data]"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"print(scaled_housing_data_plus_bias.mean(axis=0))\n",
"print(scaled_housing_data_plus_bias.mean(axis=1))\n",
"print(scaled_housing_data_plus_bias.mean())\n",
"print(scaled_housing_data_plus_bias.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### Manually computing the gradients"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_epochs = 1000\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name=\"X\")\n",
"y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name=\"y\")\n",
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\")\n",
"error = y_pred - y\n",
"mse = tf.reduce_mean(tf.square(error), name=\"mse\")\n",
"gradients = 2/m * tf.matmul(tf.transpose(X), error)\n",
"training_op = tf.assign(theta, theta - learning_rate * gradients)\n",
"\n",
"init = tf.global_variables_initializer()\n",
"\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" if epoch % 100 == 0:\n",
" print(\"Epoch\", epoch, \"MSE =\", mse.eval())\n",
" sess.run(training_op)\n",
" \n",
" best_theta = theta.eval()"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"best_theta"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### Using autodiff"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Same as above except for the `gradients = ...` line:"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_epochs = 1000\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name=\"X\")\n",
"y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name=\"y\")\n",
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\")\n",
"error = y_pred - y\n",
"mse = tf.reduce_mean(tf.square(error), name=\"mse\")"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"gradients = tf.gradients(mse, [theta])[0]"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"training_op = tf.assign(theta, theta - learning_rate * gradients)\n",
"\n",
"init = tf.global_variables_initializer()\n",
"\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" if epoch % 100 == 0:\n",
" print(\"Epoch\", epoch, \"MSE =\", mse.eval())\n",
" sess.run(training_op)\n",
" \n",
" best_theta = theta.eval()\n",
"\n",
"print(\"Best theta:\")\n",
"print(best_theta)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"How could you find the partial derivatives of the following function with regards to `a` and `b`?"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def my_func(a, b):\n",
" z = 0\n",
" for i in range(100):\n",
" z = a * np.cos(z + i) + z * np.sin(b - i)\n",
" return z"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"my_func(0.2, 0.3)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"a = tf.Variable(0.2, name=\"a\")\n",
"b = tf.Variable(0.3, name=\"b\")\n",
"z = tf.constant(0.0, name=\"z0\")\n",
"for i in range(100):\n",
" z = a * tf.cos(z + i) + z * tf.sin(b - i)\n",
"\n",
"grads = tf.gradients(z, [a, b])\n",
"init = tf.global_variables_initializer()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's compute the function at $a=0.2$ and $b=0.3$, and the partial derivatives at that point with regards to $a$ and with regards to $b$:"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" init.run()\n",
" print(z.eval())\n",
" print(sess.run(grads))"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### Using a `GradientDescentOptimizer`"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_epochs = 1000\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name=\"X\")\n",
"y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name=\"y\")\n",
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\")\n",
"error = y_pred - y\n",
"mse = tf.reduce_mean(tf.square(error), name=\"mse\")"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(mse)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"init = tf.global_variables_initializer()\n",
"\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" if epoch % 100 == 0:\n",
" print(\"Epoch\", epoch, \"MSE =\", mse.eval())\n",
" sess.run(training_op)\n",
" \n",
" best_theta = theta.eval()\n",
"\n",
"print(\"Best theta:\")\n",
"print(best_theta)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### Using a momentum optimizer"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_epochs = 1000\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name=\"X\")\n",
"y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name=\"y\")\n",
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\")\n",
"error = y_pred - y\n",
"mse = tf.reduce_mean(tf.square(error), name=\"mse\")"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,\n",
" momentum=0.9)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"training_op = optimizer.minimize(mse)\n",
"\n",
"init = tf.global_variables_initializer()"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" sess.run(training_op)\n",
" \n",
" best_theta = theta.eval()\n",
"\n",
"print(\"Best theta:\")\n",
"print(best_theta)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Feeding data to the training algorithm"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## Placeholder nodes"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"A = tf.placeholder(tf.float32, shape=(None, 3))\n",
"B = A + 5\n",
"with tf.Session() as sess:\n",
" B_val_1 = B.eval(feed_dict={A: [[1, 2, 3]]})\n",
" B_val_2 = B.eval(feed_dict={A: [[4, 5, 6], [7, 8, 9]]})\n",
"\n",
"print(B_val_1)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"print(B_val_2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## Mini-batch Gradient Descent"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_epochs = 1000\n",
"learning_rate = 0.01"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"X = tf.placeholder(tf.float32, shape=(None, n + 1), name=\"X\")\n",
"y = tf.placeholder(tf.float32, shape=(None, 1), name=\"y\")"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\")\n",
"error = y_pred - y\n",
"mse = tf.reduce_mean(tf.square(error), name=\"mse\")\n",
"optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(mse)\n",
"\n",
"init = tf.global_variables_initializer()"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"n_epochs = 10"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"batch_size = 100\n",
"n_batches = int(np.ceil(m / batch_size))"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def fetch_batch(epoch, batch_index, batch_size):\n",
" rnd.seed(epoch * n_batches + batch_index) # not shown in the book\n",
" indices = rnd.randint(m, size=batch_size) # not shown\n",
" X_batch = scaled_housing_data_plus_bias[indices] # not shown\n",
" y_batch = housing.target.reshape(-1, 1)[indices] # not shown\n",
" return X_batch, y_batch\n",
"\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" for batch_index in range(n_batches):\n",
" X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size)\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
"\n",
" best_theta = theta.eval()"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"best_theta"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Saving and restoring a model"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_epochs = 1000 # not shown in the book\n",
"learning_rate = 0.01 # not shown\n",
"\n",
"X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name=\"X\") # not shown\n",
"y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name=\"y\") # not shown\n",
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\") # not shown\n",
"error = y_pred - y # not shown\n",
"mse = tf.reduce_mean(tf.square(error), name=\"mse\") # not shown\n",
"optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) # not shown\n",
"training_op = optimizer.minimize(mse) # not shown\n",
"\n",
"init = tf.global_variables_initializer()\n",
"saver = tf.train.Saver()\n",
"\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" if epoch % 100 == 0:\n",
" print(\"Epoch\", epoch, \"MSE =\", mse.eval()) # not shown\n",
" save_path = saver.save(sess, \"/tmp/my_model.ckpt\")\n",
" sess.run(training_op)\n",
" \n",
" best_theta = theta.eval()\n",
" save_path = saver.save(sess, \"/tmp/my_model_final.ckpt\")"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"best_theta"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"with tf.Session() as sess:\n",
" saver.restore(sess, \"/tmp/my_model_final.ckpt\")\n",
" best_theta_restored = theta.eval() # not shown in the book"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"np.allclose(best_theta, best_theta_restored)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you want to have a saver that loads and restores `theta` with a different name, such as `\"weights\"`:"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"saver = tf.train.Saver({\"weights\": theta})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"By default the saver also saves the graph structure itself in a second file with the extension `.meta`. You can use the function `tf.train.import_meta_graph()` to restore the graph structure. This function loads the graph into the default graph and returns a `Saver` that can then be used to restore the graph state (i.e., the variable values):"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph() # notice that we start with an empty graph.\n",
"\n",
"saver = tf.train.import_meta_graph(\"/tmp/my_model_final.ckpt.meta\") # this loads the graph structure\n",
"theta = tf.get_default_graph().get_tensor_by_name(\"theta:0\") # not shown in the book\n",
"\n",
"with tf.Session() as sess:\n",
" saver.restore(sess, \"/tmp/my_model_final.ckpt\") # this restores the graph's state\n",
" best_theta_restored = theta.eval() # not shown in the book"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"np.allclose(best_theta, best_theta_restored)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This means that you can import a pretrained model without having to have the corresponding Python code to build the graph. This is very handy when you keep tweaking and saving your model: you can load a previously saved model without having to search for the version of the code that built it."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Visualizing the graph\n",
"## inside Jupyter"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"from IPython.display import clear_output, Image, display, HTML\n",
"\n",
"def strip_consts(graph_def, max_const_size=32):\n",
" \"\"\"Strip large constant values from graph_def.\"\"\"\n",
" strip_def = tf.GraphDef()\n",
" for n0 in graph_def.node:\n",
" n = strip_def.node.add() \n",
" n.MergeFrom(n0)\n",
" if n.op == 'Const':\n",
" tensor = n.attr['value'].tensor\n",
" size = len(tensor.tensor_content)\n",
" if size > max_const_size:\n",
" tensor.tensor_content = b\"<stripped %d bytes>\"%size\n",
" return strip_def\n",
"\n",
"def show_graph(graph_def, max_const_size=32):\n",
" \"\"\"Visualize TensorFlow graph.\"\"\"\n",
" if hasattr(graph_def, 'as_graph_def'):\n",
" graph_def = graph_def.as_graph_def()\n",
" strip_def = strip_consts(graph_def, max_const_size=max_const_size)\n",
" code = \"\"\"\n",
" <script>\n",
" function load() {{\n",
" document.getElementById(\"{id}\").pbtxt = {data};\n",
" }}\n",
" </script>\n",
" <link rel=\"import\" href=\"https://tensorboard.appspot.com/tf-graph-basic.build.html\" onload=load()>\n",
" <div style=\"height:600px\">\n",
" <tf-graph-basic id=\"{id}\"></tf-graph-basic>\n",
" </div>\n",
" \"\"\".format(data=repr(str(strip_def)), id='graph'+str(np.random.rand()))\n",
"\n",
" iframe = \"\"\"\n",
" <iframe seamless style=\"width:1200px;height:620px;border:0\" srcdoc=\"{}\"></iframe>\n",
" \"\"\".format(code.replace('\"', '&quot;'))\n",
" display(HTML(iframe))"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true,
"scrolled": true
},
"outputs": [],
"source": [
"show_graph(tf.get_default_graph())"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## Using TensorBoard"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"from datetime import datetime\n",
"\n",
"now = datetime.utcnow().strftime(\"%Y%m%d%H%M%S\")\n",
"root_logdir = \"tf_logs\"\n",
"logdir = \"{}/run-{}/\".format(root_logdir, now)"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"n_epochs = 1000\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, n + 1), name=\"X\")\n",
"y = tf.placeholder(tf.float32, shape=(None, 1), name=\"y\")\n",
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\")\n",
"error = y_pred - y\n",
"mse = tf.reduce_mean(tf.square(error), name=\"mse\")\n",
"optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(mse)\n",
"\n",
"init = tf.global_variables_initializer()"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"mse_summary = tf.summary.scalar('MSE', mse)\n",
"file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"n_epochs = 10\n",
"batch_size = 100\n",
"n_batches = int(np.ceil(m / batch_size))"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"with tf.Session() as sess: # not shown in the book\n",
" sess.run(init) # not shown\n",
"\n",
" for epoch in range(n_epochs): # not shown\n",
" for batch_index in range(n_batches):\n",
" X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size)\n",
" if batch_index % 10 == 0:\n",
" summary_str = mse_summary.eval(feed_dict={X: X_batch, y: y_batch})\n",
" step = epoch * n_batches + batch_index\n",
" file_writer.add_summary(summary_str, step)\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
"\n",
" best_theta = theta.eval() # not shown"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"file_writer.close()"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"best_theta"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Name scopes"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"now = datetime.utcnow().strftime(\"%Y%m%d%H%M%S\")\n",
"root_logdir = \"tf_logs\"\n",
"logdir = \"{}/run-{}/\".format(root_logdir, now)\n",
"\n",
"n_epochs = 1000\n",
"learning_rate = 0.01\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, n + 1), name=\"X\")\n",
"y = tf.placeholder(tf.float32, shape=(None, 1), name=\"y\")\n",
"theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"y_pred = tf.matmul(X, theta, name=\"predictions\")"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"with tf.name_scope(\"loss\") as scope:\n",
" error = y_pred - y\n",
" mse = tf.reduce_mean(tf.square(error), name=\"mse\")"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(mse)\n",
"\n",
"init = tf.global_variables_initializer()\n",
"\n",
"mse_summary = tf.summary.scalar('MSE', mse)\n",
"file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"n_epochs = 10\n",
"batch_size = 100\n",
"n_batches = int(np.ceil(m / batch_size))\n",
"\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" for batch_index in range(n_batches):\n",
" X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size)\n",
" if batch_index % 10 == 0:\n",
" summary_str = mse_summary.eval(feed_dict={X: X_batch, y: y_batch})\n",
" step = epoch * n_batches + batch_index\n",
" file_writer.add_summary(summary_str, step)\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
"\n",
" best_theta = theta.eval()\n",
"\n",
"file_writer.flush()\n",
"file_writer.close()\n",
"print(\"Best theta:\")\n",
"print(best_theta)"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"print(error.op.name)"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"print(mse.op.name)"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"a1 = tf.Variable(0, name=\"a\") # name == \"a\"\n",
"a2 = tf.Variable(0, name=\"a\") # name == \"a_1\"\n",
"\n",
"with tf.name_scope(\"param\"): # name == \"param\"\n",
" a3 = tf.Variable(0, name=\"a\") # name == \"param/a\"\n",
"\n",
"with tf.name_scope(\"param\"): # name == \"param_1\"\n",
" a4 = tf.Variable(0, name=\"a\") # name == \"param_1/a\"\n",
"\n",
"for node in (a1, a2, a3, a4):\n",
" print(node.op.name)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Modularity"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"An ugly flat code:"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"n_features = 3\n",
"X = tf.placeholder(tf.float32, shape=(None, n_features), name=\"X\")\n",
"\n",
"w1 = tf.Variable(tf.random_normal((n_features, 1)), name=\"weights1\")\n",
"w2 = tf.Variable(tf.random_normal((n_features, 1)), name=\"weights2\")\n",
"b1 = tf.Variable(0.0, name=\"bias1\")\n",
"b2 = tf.Variable(0.0, name=\"bias2\")\n",
"\n",
"z1 = tf.add(tf.matmul(X, w1), b1, name=\"z1\")\n",
"z2 = tf.add(tf.matmul(X, w2), b2, name=\"z2\")\n",
"\n",
"relu1 = tf.maximum(z1, 0., name=\"relu1\")\n",
"relu2 = tf.maximum(z1, 0., name=\"relu2\") # Oops, cut&paste error! Did you spot it?\n",
"\n",
"output = tf.add(relu1, relu2, name=\"output\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Much better, using a function to build the ReLUs:"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"def relu(X):\n",
" w_shape = (int(X.get_shape()[1]), 1)\n",
" w = tf.Variable(tf.random_normal(w_shape), name=\"weights\")\n",
" b = tf.Variable(0.0, name=\"bias\")\n",
" z = tf.add(tf.matmul(X, w), b, name=\"z\")\n",
" return tf.maximum(z, 0., name=\"relu\")\n",
"\n",
"n_features = 3\n",
"X = tf.placeholder(tf.float32, shape=(None, n_features), name=\"X\")\n",
"relus = [relu(X) for i in range(5)]\n",
"output = tf.add_n(relus, name=\"output\")"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"file_writer = tf.summary.FileWriter(\"logs/relu1\", tf.get_default_graph())"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Even better using name scopes:"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"def relu(X):\n",
" with tf.name_scope(\"relu\"):\n",
" w_shape = (int(X.get_shape()[1]), 1) # not shown in the book\n",
" w = tf.Variable(tf.random_normal(w_shape), name=\"weights\") # not shown\n",
" b = tf.Variable(0.0, name=\"bias\") # not shown\n",
" z = tf.add(tf.matmul(X, w), b, name=\"z\") # not shown\n",
" return tf.maximum(z, 0., name=\"max\") # not shown"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"n_features = 3\n",
"X = tf.placeholder(tf.float32, shape=(None, n_features), name=\"X\")\n",
"relus = [relu(X) for i in range(5)]\n",
"output = tf.add_n(relus, name=\"output\")\n",
"\n",
"file_writer = tf.summary.FileWriter(\"logs/relu2\", tf.get_default_graph())\n",
"file_writer.close()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sharing Variables"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Sharing a `threshold` variable the classic way, by defining it outside of the `relu()` function then passing it as a parameter:"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"def relu(X, threshold):\n",
" with tf.name_scope(\"relu\"):\n",
" w_shape = (int(X.get_shape()[1]), 1) # not shown in the book\n",
" w = tf.Variable(tf.random_normal(w_shape), name=\"weights\") # not shown\n",
" b = tf.Variable(0.0, name=\"bias\") # not shown\n",
" z = tf.add(tf.matmul(X, w), b, name=\"z\") # not shown\n",
" return tf.maximum(z, threshold, name=\"max\")\n",
"\n",
"threshold = tf.Variable(0.0, name=\"threshold\")\n",
"X = tf.placeholder(tf.float32, shape=(None, n_features), name=\"X\")\n",
"relus = [relu(X, threshold) for i in range(5)]\n",
"output = tf.add_n(relus, name=\"output\")"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"def relu(X):\n",
" with tf.name_scope(\"relu\"):\n",
" if not hasattr(relu, \"threshold\"):\n",
" relu.threshold = tf.Variable(0.0, name=\"threshold\")\n",
" w_shape = int(X.get_shape()[1]), 1 # not shown in the book\n",
" w = tf.Variable(tf.random_normal(w_shape), name=\"weights\") # not shown\n",
" b = tf.Variable(0.0, name=\"bias\") # not shown\n",
" z = tf.add(tf.matmul(X, w), b, name=\"z\") # not shown\n",
" return tf.maximum(z, relu.threshold, name=\"max\")"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"X = tf.placeholder(tf.float32, shape=(None, n_features), name=\"X\")\n",
"relus = [relu(X) for i in range(5)]\n",
"output = tf.add_n(relus, name=\"output\")"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"with tf.variable_scope(\"relu\"):\n",
" threshold = tf.get_variable(\"threshold\", shape=(),\n",
" initializer=tf.constant_initializer(0.0))"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"with tf.variable_scope(\"relu\", reuse=True):\n",
" threshold = tf.get_variable(\"threshold\")"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"with tf.variable_scope(\"relu\") as scope:\n",
" scope.reuse_variables()\n",
" threshold = tf.get_variable(\"threshold\")"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"def relu(X):\n",
" with tf.variable_scope(\"relu\", reuse=True):\n",
" threshold = tf.get_variable(\"threshold\")\n",
" w_shape = int(X.get_shape()[1]), 1 # not shown\n",
" w = tf.Variable(tf.random_normal(w_shape), name=\"weights\") # not shown\n",
" b = tf.Variable(0.0, name=\"bias\") # not shown\n",
" z = tf.add(tf.matmul(X, w), b, name=\"z\") # not shown\n",
" return tf.maximum(z, threshold, name=\"max\")\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, n_features), name=\"X\")\n",
"with tf.variable_scope(\"relu\"):\n",
" threshold = tf.get_variable(\"threshold\", shape=(),\n",
" initializer=tf.constant_initializer(0.0))\n",
"relus = [relu(X) for relu_index in range(5)]\n",
"output = tf.add_n(relus, name=\"output\")"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"file_writer = tf.summary.FileWriter(\"logs/relu6\", tf.get_default_graph())\n",
"file_writer.close()"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"def relu(X):\n",
" with tf.variable_scope(\"relu\"):\n",
" threshold = tf.get_variable(\"threshold\", shape=(), initializer=tf.constant_initializer(0.0))\n",
" w_shape = (int(X.get_shape()[1]), 1)\n",
" w = tf.Variable(tf.random_normal(w_shape), name=\"weights\")\n",
" b = tf.Variable(0.0, name=\"bias\")\n",
" z = tf.add(tf.matmul(X, w), b, name=\"z\")\n",
" return tf.maximum(z, threshold, name=\"max\")\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, n_features), name=\"X\")\n",
"with tf.variable_scope(\"\", default_name=\"\") as scope:\n",
" first_relu = relu(X) # create the shared variable\n",
" scope.reuse_variables() # then reuse it\n",
" relus = [first_relu] + [relu(X) for i in range(4)]\n",
"output = tf.add_n(relus, name=\"output\")\n",
"\n",
"file_writer = tf.summary.FileWriter(\"logs/relu8\", tf.get_default_graph())\n",
"file_writer.close()"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"def relu(X):\n",
" threshold = tf.get_variable(\"threshold\", shape=(),\n",
" initializer=tf.constant_initializer(0.0))\n",
" w_shape = (int(X.get_shape()[1]), 1) # not shown in the book\n",
" w = tf.Variable(tf.random_normal(w_shape), name=\"weights\") # not shown\n",
" b = tf.Variable(0.0, name=\"bias\") # not shown\n",
" z = tf.add(tf.matmul(X, w), b, name=\"z\") # not shown\n",
" return tf.maximum(z, threshold, name=\"max\")\n",
"\n",
"X = tf.placeholder(tf.float32, shape=(None, n_features), name=\"X\")\n",
"relus = []\n",
"for relu_index in range(5):\n",
" with tf.variable_scope(\"relu\", reuse=(relu_index >= 1)) as scope:\n",
" relus.append(relu(X))\n",
"output = tf.add_n(relus, name=\"output\")"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"file_writer = tf.summary.FileWriter(\"logs/relu9\", tf.get_default_graph())\n",
"file_writer.close()"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Extra material"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"with tf.variable_scope(\"my_scope\"):\n",
" x0 = tf.get_variable(\"x\", shape=(), initializer=tf.constant_initializer(0.))\n",
" x1 = tf.Variable(0., name=\"x\")\n",
" x2 = tf.Variable(0., name=\"x\")\n",
"\n",
"with tf.variable_scope(\"my_scope\", reuse=True):\n",
" x3 = tf.get_variable(\"x\")\n",
" x4 = tf.Variable(0., name=\"x\")\n",
"\n",
"with tf.variable_scope(\"\", default_name=\"\", reuse=True):\n",
" x5 = tf.get_variable(\"my_scope/x\")\n",
"\n",
"print(\"x0:\", x0.op.name)\n",
"print(\"x1:\", x1.op.name)\n",
"print(\"x2:\", x2.op.name)\n",
"print(\"x3:\", x3.op.name)\n",
"print(\"x4:\", x4.op.name)\n",
"print(\"x5:\", x5.op.name)\n",
"print(x0 is x3 and x3 is x5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The first `variable_scope()` block first creates the shared variable `x0`, named `my_scope/x`. For all operations other than shared variables (including non-shared variables), the variable scope acts like a regular name scope, which is why the two variables `x1` and `x2` have a name with a prefix `my_scope/`. Note however that TensorFlow makes their names unique by adding an index: `my_scope/x_1` and `my_scope/x_2`.\n",
"\n",
"The second `variable_scope()` block reuses the shared variables in scope `my_scope`, which is why `x0 is x3`. Once again, for all operations other than shared variables it acts as a named scope, and since it's a separate block from the first one, the name of the scope is made unique by TensorFlow (`my_scope_1`) and thus the variable `x4` is named `my_scope_1/x`.\n",
"\n",
"The third block shows another way to get a handle on the shared variable `my_scope/x` by creating a `variable_scope()` at the root scope (whose name is an empty string), then calling `get_variable()` with the full name of the shared variable (i.e. `\"my_scope/x\"`)."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## Strings"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"text = np.array(\"Do you want some café?\".split())\n",
"text_tensor = tf.constant(text)\n",
"\n",
"with tf.Session() as sess:\n",
" print(text_tensor.eval())"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## Implementing a Home-Made Computation Graph"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"class Const(object):\n",
" def __init__(self, value):\n",
" self.value = value\n",
" def evaluate(self):\n",
" return self.value\n",
" def __str__(self):\n",
" return str(self.value)\n",
"\n",
"class Var(object):\n",
" def __init__(self, init_value, name):\n",
" self.value = init_value\n",
" self.name = name\n",
" def evaluate(self):\n",
" return self.value\n",
" def __str__(self):\n",
" return self.name\n",
"\n",
"class BinaryOperator(object):\n",
" def __init__(self, a, b):\n",
" self.a = a\n",
" self.b = b\n",
"\n",
"class Add(BinaryOperator):\n",
" def evaluate(self):\n",
" return self.a.evaluate() + self.b.evaluate()\n",
" def __str__(self):\n",
" return \"{} + {}\".format(self.a, self.b)\n",
"\n",
"class Mul(BinaryOperator):\n",
" def evaluate(self):\n",
" return self.a.evaluate() * self.b.evaluate()\n",
" def __str__(self):\n",
" return \"({}) * ({})\".format(self.a, self.b)\n",
"\n",
"x = Var(3, name=\"x\")\n",
"y = Var(4, name=\"y\")\n",
"f = Add(Mul(Mul(x, x), y), Add(y, Const(2))) # f(x,y) = x²y + y + 2\n",
"print(\"f(x,y) =\", f)\n",
"print(\"f(3,4) =\", f.evaluate())"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## Computing gradients\n",
"### Mathematical differentiation"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"df_dx = Mul(Const(2), Mul(x, y)) # df/dx = 2xy\n",
"df_dy = Add(Mul(x, x), Const(1)) # df/dy = x² + 1\n",
"print(\"df/dx(3,4) =\", df_dx.evaluate())\n",
"print(\"df/dy(3,4) =\", df_dy.evaluate())"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### Numerical differentiation"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"def gradients(func, vars_list, eps=0.0001):\n",
" partial_derivatives = []\n",
" base_func_eval = func.evaluate()\n",
" for var in vars_list:\n",
" original_value = var.value\n",
" var.value = var.value + eps\n",
" tweaked_func_eval = func.evaluate()\n",
" var.value = original_value\n",
" derivative = (tweaked_func_eval - base_func_eval) / eps\n",
" partial_derivatives.append(derivative)\n",
" return partial_derivatives\n",
"\n",
"df_dx, df_dy = gradients(f, [x, y])\n",
"print(\"df/dx(3,4) =\", df_dx)\n",
"print(\"df/dy(3,4) =\", df_dy)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### Symbolic differentiation"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"Const.derive = lambda self, var: Const(0)\n",
"Var.derive = lambda self, var: Const(1) if self is var else Const(0)\n",
"Add.derive = lambda self, var: Add(self.a.derive(var), self.b.derive(var))\n",
"Mul.derive = lambda self, var: Add(Mul(self.a, self.b.derive(var)), Mul(self.a.derive(var), self.b))\n",
"\n",
"x = Var(3.0, name=\"x\")\n",
"y = Var(4.0, name=\"y\")\n",
"f = Add(Mul(Mul(x, x), y), Add(y, Const(2))) # f(x,y) = x²y + y + 2\n",
"\n",
"df_dx = f.derive(x) # 2xy\n",
"df_dy = f.derive(y) # x² + 1\n",
"print(\"df/dx(3,4) =\", df_dx.evaluate())\n",
"print(\"df/dy(3,4) =\", df_dy.evaluate())"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### Automatic differentiation (autodiff) forward mode"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class DualNumber(object):\n",
" def __init__(self, value=0.0, eps=0.0):\n",
" self.value = value\n",
" self.eps = eps\n",
" def __add__(self, b):\n",
" return DualNumber(self.value + self.to_dual(b).value,\n",
" self.eps + self.to_dual(b).eps)\n",
" def __radd__(self, a):\n",
" return self.to_dual(a).__add__(self)\n",
" def __mul__(self, b):\n",
" return DualNumber(self.value * self.to_dual(b).value,\n",
" self.eps * self.to_dual(b).value + self.value * self.to_dual(b).eps)\n",
" def __rmul__(self, a):\n",
" return self.to_dual(a).__mul__(self)\n",
" def __str__(self):\n",
" if self.eps:\n",
" return \"{:.1f} + {:.1f}ε\".format(self.value, self.eps)\n",
" else:\n",
" return \"{:.1f}\".format(self.value)\n",
" def __repr__(self):\n",
" return str(self)\n",
" @classmethod\n",
" def to_dual(cls, n):\n",
" if hasattr(n, \"value\"):\n",
" return n\n",
" else:\n",
" return cls(n)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$3 + (3 + 4 \\epsilon) = 6 + 4\\epsilon$"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"3 + DualNumber(3, 4)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$(3 + 4ε)\\times(5 + 7ε) = 3 \\times 5 + 3 \\times 7ε + 4ε \\times 5 + 4ε \\times 7ε = 15 + 21ε + 20ε + 28ε^2 = 15 + 41ε + 28 \\times 0 = 15 + 41ε$"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"DualNumber(3, 4) * DualNumber(5, 7)"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"x.value = DualNumber(3.0)\n",
"y.value = DualNumber(4.0)\n",
"\n",
"f.evaluate()"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"x.value = DualNumber(3.0, 1.0) # 3 + ε\n",
"y.value = DualNumber(4.0) # 4\n",
"\n",
"df_dx = f.evaluate().eps\n",
"\n",
"x.value = DualNumber(3.0) # 3\n",
"y.value = DualNumber(4.0, 1.0) # 4 + ε\n",
"\n",
"df_dy = f.evaluate().eps"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df_dx"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df_dy"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### Autodiff Reverse mode"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"class Const(object):\n",
" def __init__(self, value):\n",
" self.value = value\n",
" def evaluate(self):\n",
" return self.value\n",
" def backpropagate(self, gradient):\n",
" pass\n",
" def __str__(self):\n",
" return str(self.value)\n",
"\n",
"class Var(object):\n",
" def __init__(self, init_value, name):\n",
" self.value = init_value\n",
" self.name = name\n",
" self.gradient = 0\n",
" def evaluate(self):\n",
" return self.value\n",
" def backpropagate(self, gradient):\n",
" self.gradient += gradient\n",
" def __str__(self):\n",
" return self.name\n",
"\n",
"class BinaryOperator(object):\n",
" def __init__(self, a, b):\n",
" self.a = a\n",
" self.b = b\n",
"\n",
"class Add(BinaryOperator):\n",
" def evaluate(self):\n",
" self.value = self.a.evaluate() + self.b.evaluate()\n",
" return self.value\n",
" def backpropagate(self, gradient):\n",
" self.a.backpropagate(gradient)\n",
" self.b.backpropagate(gradient)\n",
" def __str__(self):\n",
" return \"{} + {}\".format(self.a, self.b)\n",
"\n",
"class Mul(BinaryOperator):\n",
" def evaluate(self):\n",
" self.value = self.a.evaluate() * self.b.evaluate()\n",
" return self.value\n",
" def backpropagate(self, gradient):\n",
" self.a.backpropagate(gradient * self.b.value)\n",
" self.b.backpropagate(gradient * self.a.value)\n",
" def __str__(self):\n",
" return \"({}) * ({})\".format(self.a, self.b)\n",
"\n",
"x = Var(3, name=\"x\")\n",
"y = Var(4, name=\"y\")\n",
"f = Add(Mul(Mul(x, x), y), Add(y, Const(2))) # f(x,y) = x²y + y + 2\n",
"\n",
"result = f.evaluate()\n",
"f.backpropagate(1.0)\n",
"\n",
"print(\"f(x,y) =\", f)\n",
"print(\"f(3,4) =\", result)\n",
"print(\"df_dx =\", x.gradient)\n",
"print(\"df_dy =\", y.gradient)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### Autodiff reverse mode (using TensorFlow)"
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
"x = tf.Variable(3., name=\"x\")\n",
"y = tf.Variable(4., name=\"y\")\n",
"f = x*x*y + y + 2\n",
"\n",
"gradients = tf.gradients(f, [x, y])\n",
"\n",
"init = tf.global_variables_initializer()\n",
"\n",
"with tf.Session() as sess:\n",
" init.run()\n",
" f_val, gradients_val = sess.run([f, gradients])\n",
"\n",
"f_val, gradients_val"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"# Exercise solutions"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## 1. to 11."
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"source": [
"See appendix A."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 12. Logistic Regression with Mini-Batch Gradient Descent using TensorFlow"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, let's create the moons dataset using Scikit-Learn's `make_moons()` function:"
]
},
{
"cell_type": "code",
"execution_count": 104,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from sklearn.datasets import make_moons\n",
"\n",
"m = 1000\n",
"X_moons, y_moons = make_moons(m, noise=0.1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's take a peek at the dataset:"
]
},
{
"cell_type": "code",
"execution_count": 105,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"plt.plot(X_moons[y_moons == 1, 0], X_moons[y_moons == 1, 1], 'go', label=\"Positive\")\n",
"plt.plot(X_moons[y_moons == 0, 0], X_moons[y_moons == 0, 1], 'r^', label=\"Negative\")\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We must not forget to add an extra bias feature ($x_0 = 1$) to every instance. For this, we just need to add a column full of 1s on the left of the input matrix $\\mathbf{X}$:"
]
},
{
"cell_type": "code",
"execution_count": 106,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X_moons_with_bias = np.c_[np.ones((m, 1)), X_moons]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's check:"
]
},
{
"cell_type": "code",
"execution_count": 107,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X_moons_with_bias[:5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Looks good. Now let's reshape `y_train` to make it a column vector (i.e. a 2D array with a single column):"
]
},
{
"cell_type": "code",
"execution_count": 108,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"y_moons_column_vector = y_moons.reshape(-1, 1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's split the data into a training set and a test set:"
]
},
{
"cell_type": "code",
"execution_count": 109,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"test_ratio = 0.2\n",
"test_size = int(m * test_ratio)\n",
"X_train = X_moons_with_bias[:-test_size]\n",
"X_test = X_moons_with_bias[-test_size:]\n",
"y_train = y_moons_column_vector[:-test_size]\n",
"y_test = y_moons_column_vector[-test_size:]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ok, now let's create a small function to generate training batches. In this implementation we will just pick random instances from the training set for each batch. This means that a single batch may contain the same instance multiple times, and also a single epoch may not cover all the training instances (in fact it will generally cover only about two thirds of the instances). However, in practice this is not an issue and it simplifies the code:"
]
},
{
"cell_type": "code",
"execution_count": 110,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def random_batch(X_train, y_train, batch_size):\n",
" rnd_indices = np.random.randint(0, len(X_train), batch_size)\n",
" X_batch = X_train[rnd_indices]\n",
" y_batch = y_train[rnd_indices]\n",
" return X_batch, y_batch"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's look at a small batch:"
]
},
{
"cell_type": "code",
"execution_count": 111,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"X_batch, y_batch = random_batch(X_train, y_train, 5)\n",
"X_batch"
]
},
{
"cell_type": "code",
"execution_count": 112,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"y_batch"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Great! Now that the data is ready to be fed to the model, we need to build that model. Let's start with a simple implementation, then we will add all the bells and whistles."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First let's reset the default graph."
]
},
{
"cell_type": "code",
"execution_count": 113,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"tf.reset_default_graph()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The _moons_ dataset has two input features, since each instance is a point on a plane (i.e., 2-Dimensional):"
]
},
{
"cell_type": "code",
"execution_count": 114,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"n_inputs = 2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's build the Logistic Regression model. As we saw in chapter 4, this model first computes a weighted sum of the inputs (just like the Linear Regression model), and then it applies the sigmoid function to the result, which gives us the estimated probability for the positive class:\n",
"\n",
"$\\hat{p} = h_\\mathbf{\\theta}(\\mathbf{x}) = \\sigma(\\mathbf{\\theta}^T \\cdot \\mathbf{x})$\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Recall that $\\mathbf{\\theta}$ is the parameter vector, containing the bias term $\\theta_0$ and the weights $\\theta_1, \\theta_2, \\dots, \\theta_n$. The input vector $\\mathbf{x}$ contains a constant term $x_0 = 1$, as well as all the input features $x_1, x_2, \\dots, x_n$.\n",
"\n",
"Since we want to be able to make predictions for multiple instances at a time, we will use an input matrix $\\mathbf{X}$ rather than a single input vector. The $i^{th}$ row will contain the transpose of the $i^{th}$ input vector $(\\mathbf{x}^{(i)})^T$. It is then possible to estimate the probability that each instance belongs to the positive class using the following equation:\n",
"\n",
"$ \\hat{\\mathbf{p}} = \\sigma(\\mathbf{X} \\cdot \\mathbf{\\theta})$\n",
"\n",
"That's all we need to build the model:"
]
},
{
"cell_type": "code",
"execution_count": 115,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"X = tf.placeholder(tf.float32, shape=(None, n_inputs + 1), name=\"X\")\n",
"y = tf.placeholder(tf.float32, shape=(None, 1), name=\"y\")\n",
"theta = tf.Variable(tf.random_uniform([n_inputs + 1, 1], -1.0, 1.0, seed=42), name=\"theta\")\n",
"logits = tf.matmul(X, theta, name=\"logits\")\n",
"y_proba = 1 / (1 + tf.exp(-logits))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In fact, TensorFlow has a nice function `tf.sigmoid()` that we can use to simplify the last line of the previous code:"
]
},
{
"cell_type": "code",
"execution_count": 116,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"y_proba = tf.sigmoid(logits)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As we saw in chapter 4, the log loss is a good cost function to use for Logistic Regression:\n",
"\n",
"$J(\\mathbf{\\theta}) = -\\dfrac{1}{m} \\sum\\limits_{i=1}^{m}{\\left[ y^{(i)} log\\left(\\hat{p}^{(i)}\\right) + (1 - y^{(i)}) log\\left(1 - \\hat{p}^{(i)}\\right)\\right]}$\n",
"\n",
"One option is to implement it ourselves:"
]
},
{
"cell_type": "code",
"execution_count": 117,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"epsilon = 1e-7 # to avoid an overflow when computing the log\n",
"loss = -tf.reduce_mean(y * tf.log(y_proba + epsilon) + (1 - y) * tf.log(1 - y_proba + epsilon))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"But we might as well use TensorFlow's `tf.losses.log_loss()` function:"
]
},
{
"cell_type": "code",
"execution_count": 118,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"loss = tf.losses.log_loss(y, y_proba) # uses epsilon = 1e-7 by default"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The rest is pretty standard: let's create the optimizer and tell it to minimize the cost function:"
]
},
{
"cell_type": "code",
"execution_count": 119,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"learning_rate = 0.01\n",
"optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\n",
"training_op = optimizer.minimize(loss)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"All we need now (in this minimal version) is the variable initializer:"
]
},
{
"cell_type": "code",
"execution_count": 120,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"init = tf.global_variables_initializer()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And we are ready to train the model and use it for predictions!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There's really nothing special about this code, it's virtually the same as the one we used earlier for Linear Regression:"
]
},
{
"cell_type": "code",
"execution_count": 121,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"n_epochs = 500\n",
"batch_size = 50\n",
"n_batches = int(np.ceil(m / batch_size))\n",
"\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" for epoch in range(n_epochs):\n",
" for batch_index in range(n_batches):\n",
" X_batch, y_batch = random_batch(X_train, y_train, batch_size)\n",
" sess.run(training_op, feed_dict={X: X_batch, y: y_batch})\n",
" loss_val = loss.eval({X: X_test, y: y_test})\n",
" if epoch % 100 == 0:\n",
" print(\"Epoch:\", epoch, \"\\tLoss:\", loss_val)\n",
"\n",
" y_proba_val = y_proba.eval(feed_dict={X: X_test, y: y_test})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: we don't use the epoch number when generating batches, so we could just have a single `for` loop rather than 2 nested `for` loops, but it's convenient to think of training time in terms of number of epochs (i.e., roughly the number of times the algorithm went through the training set)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For each instance in the test set, `y_proba_val` contains the estimated probability that it belongs to the positive class, according to the model. For example, here are the first 5 estimated probabilities:"
]
},
{
"cell_type": "code",
"execution_count": 122,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"y_proba_val[:5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To classify each instance, we can go for maximum likelihood: classify as positive any instance whose estimated probability is greater or equal to 0.5:"
]
},
{
"cell_type": "code",
"execution_count": 123,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"y_pred = (y_proba_val >= 0.5)\n",
"y_pred[:5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Depending on the use case, you may want to choose a different threshold than 0.5: make it higher if you want high precision (but lower recall), and make it lower if you want high recall (but lower precision). See chapter 3 for more details."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's compute the model's precision and recall:"
]
},
{
"cell_type": "code",
"execution_count": 124,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from sklearn.metrics import precision_score, recall_score\n",
"\n",
"precision_score(y_test, y_pred)"
]
},
{
"cell_type": "code",
"execution_count": 125,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"recall_score(y_test, y_pred)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's plot these predictions to see what they look like:"
]
},
{
"cell_type": "code",
"execution_count": 126,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"y_pred_idx = y_pred.reshape(-1) # a 1D array rather than a column vector\n",
"plt.plot(X_test[y_pred_idx, 1], X_test[y_pred_idx, 2], 'go', label=\"Positive\")\n",
"plt.plot(X_test[~y_pred_idx, 1], X_test[~y_pred_idx, 2], 'r^', label=\"Negative\")\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Well, that looks pretty bad, doesn't it? But let's not forget that the Logistic Regression model has a linear decision boundary, so this is actually close to the best we can do with this model (unless we add more features, such as ${x_1}^2$, ${x_2}^2$ and $x_1 x_2$)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's just add all the bells and whistles, as listed in the exercise:\n",
"* Define the graph within a `logistic_regression()` function that can be reused easily.\n",
"* Save checkpoints using a `Saver` at regular intervals during training, and save the final model at the end of training.\n",
"* Restore the last checkpoint upon startup if training was interrupted.\n",
"* Define the graph using nice scopes so the graph looks good in TensorBoard.\n",
"* Add summaries to visualize the learning curves in TensorBoard.\n",
"* Try tweaking some hyperparameters such as the learning rate or the mini-batch size and look at the shape of the learning curve."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Coming soon**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.3"
},
"nav_menu": {
"height": "603px",
"width": "616px"
},
"toc": {
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 6,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": true
}
},
"nbformat": 4,
"nbformat_minor": 0
}