570 lines
17 KiB
Plaintext
570 lines
17 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"**Fundamentals of Machine Learning**"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from __future__ import division, print_function, unicode_literals\n",
|
|
"\n",
|
|
"%matplotlib inline\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"\n",
|
|
"plt.rcParams['axes.labelsize'] = 14\n",
|
|
"plt.rcParams['xtick.labelsize'] = 12\n",
|
|
"plt.rcParams['ytick.labelsize'] = 12\n",
|
|
"\n",
|
|
"PROJECT_ROOT_DIR = \".\"\n",
|
|
"CHAPTER_ID = \"fundamentals\"\n",
|
|
"\n",
|
|
"def save_fig(fig_id):\n",
|
|
" path = os.path.join(PROJECT_ROOT_DIR, \"images\", CHAPTER_ID, fig_id + \".png\")\n",
|
|
" print(\"Saving figure\", fig_id)\n",
|
|
" plt.tight_layout()\n",
|
|
" plt.savefig(path, format='png', dpi=300)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Load and prepare Life satisfaction data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"\n",
|
|
"# Download CSV from http://stats.oecd.org/index.aspx?DataSetCode=BLI\n",
|
|
"datapath = \"datasets/lifesat/\"\n",
|
|
"\n",
|
|
"oecd_bli = pd.read_csv(datapath+\"oecd_bli_2015.csv\", thousands=',')\n",
|
|
"oecd_bli = oecd_bli[oecd_bli[\"INEQUALITY\"]==\"TOT\"]\n",
|
|
"oecd_bli = oecd_bli.pivot(index=\"Country\", columns=\"Indicator\", values=\"Value\")\n",
|
|
"oecd_bli.head(2)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"oecd_bli[\"Life satisfaction\"].head()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Load and prepare GDP per capita data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Download data from http://goo.gl/j1MSKe (=> imf.org)\n",
|
|
"gdp_per_capita = pd.read_csv(datapath+\"gdp_per_capita.csv\", thousands=',', delimiter='\\t',\n",
|
|
" encoding='latin1', na_values=\"n/a\")\n",
|
|
"gdp_per_capita.rename(columns={\"2015\": \"GDP per capita\"}, inplace=True)\n",
|
|
"gdp_per_capita.set_index(\"Country\", inplace=True)\n",
|
|
"gdp_per_capita.head(2)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"full_country_stats = pd.merge(left=oecd_bli, right=gdp_per_capita, left_index=True, right_index=True)\n",
|
|
"full_country_stats.sort_values(by=\"GDP per capita\", inplace=\"True\")\n",
|
|
"full_country_stats"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"full_country_stats[[\"GDP per capita\", 'Life satisfaction']].loc[\"United States\"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"remove_indices = [0, 1, 6, 8, 33, 34, 35]\n",
|
|
"keep_indices = list(set(range(36)) - set(remove_indices))\n",
|
|
"\n",
|
|
"sample_data = full_country_stats[[\"GDP per capita\", 'Life satisfaction']].iloc[keep_indices]\n",
|
|
"missing_data = full_country_stats[[\"GDP per capita\", 'Life satisfaction']].iloc[remove_indices]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(5,3))\n",
|
|
"plt.axis([0, 60000, 0, 10])\n",
|
|
"position_text = {\n",
|
|
" \"Hungary\": (5000, 1),\n",
|
|
" \"Korea\": (18000, 1.7),\n",
|
|
" \"France\": (29000, 2.4),\n",
|
|
" \"Australia\": (40000, 3.1),\n",
|
|
" \"United States\": (52000, 3.8),\n",
|
|
"}\n",
|
|
"for country, pos_text in position_text.items():\n",
|
|
" pos_data_x, pos_data_y = sample_data.loc[country]\n",
|
|
" country = \"U.S.\" if country == \"United States\" else country\n",
|
|
" plt.annotate(country, xy=(pos_data_x, pos_data_y), xytext=pos_text,\n",
|
|
" arrowprops=dict(facecolor='black', width=0.5, shrink=0.1, headwidth=5))\n",
|
|
" plt.plot(pos_data_x, pos_data_y, \"ro\")\n",
|
|
"save_fig('money_happy_scatterplot')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"sample_data.loc[list(position_text.keys())]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(5,3))\n",
|
|
"plt.axis([0, 60000, 0, 10])\n",
|
|
"X=np.linspace(0, 60000, 1000)\n",
|
|
"plt.plot(X, 2*X/100000, \"r\")\n",
|
|
"plt.text(40000, 2.7, r\"$\\theta_0 = 0$\", fontsize=14, color=\"r\")\n",
|
|
"plt.text(40000, 1.8, r\"$\\theta_1 = 2 \\times 10^{-5}$\", fontsize=14, color=\"r\")\n",
|
|
"plt.plot(X, 8 - 5*X/100000, \"g\")\n",
|
|
"plt.text(5000, 9.1, r\"$\\theta_0 = 8$\", fontsize=14, color=\"g\")\n",
|
|
"plt.text(5000, 8.2, r\"$\\theta_1 = -5 \\times 10^{-5}$\", fontsize=14, color=\"g\")\n",
|
|
"plt.plot(X, 4 + 5*X/100000, \"b\")\n",
|
|
"plt.text(5000, 3.5, r\"$\\theta_0 = 4$\", fontsize=14, color=\"b\")\n",
|
|
"plt.text(5000, 2.6, r\"$\\theta_1 = 5 \\times 10^{-5}$\", fontsize=14, color=\"b\")\n",
|
|
"save_fig('tweaking_model_params_plot')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from sklearn import linear_model\n",
|
|
"lin1 = linear_model.LinearRegression()\n",
|
|
"Xsample = np.c_[sample_data[\"GDP per capita\"]]\n",
|
|
"ysample = np.c_[sample_data[\"Life satisfaction\"]]\n",
|
|
"lin1.fit(Xsample, ysample)\n",
|
|
"t0, t1 = lin1.intercept_[0], lin1.coef_[0][0]\n",
|
|
"t0, t1"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(5,3))\n",
|
|
"plt.axis([0, 60000, 0, 10])\n",
|
|
"X=np.linspace(0, 60000, 1000)\n",
|
|
"plt.plot(X, t0 + t1*X, \"b\")\n",
|
|
"plt.text(5000, 3.1, r\"$\\theta_0 = 4.85$\", fontsize=14, color=\"b\")\n",
|
|
"plt.text(5000, 2.2, r\"$\\theta_1 = 4.91 \\times 10^{-5}$\", fontsize=14, color=\"b\")\n",
|
|
"save_fig('best_fit_model_plot')\n",
|
|
"plt.show()\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cyprus_gdp_per_capita = gdp_per_capita.loc[\"Cyprus\"][\"GDP per capita\"]\n",
|
|
"print(cyprus_gdp_per_capita)\n",
|
|
"cyprus_predicted_life_satisfaction = lin1.predict(cyprus_gdp_per_capita)[0][0]\n",
|
|
"cyprus_predicted_life_satisfaction"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(5,3), s=1)\n",
|
|
"X=np.linspace(0, 60000, 1000)\n",
|
|
"plt.plot(X, t0 + t1*X, \"b\")\n",
|
|
"plt.axis([0, 60000, 0, 10])\n",
|
|
"plt.text(5000, 7.5, r\"$\\theta_0 = 4.85$\", fontsize=14, color=\"b\")\n",
|
|
"plt.text(5000, 6.6, r\"$\\theta_1 = 4.91 \\times 10^{-5}$\", fontsize=14, color=\"b\")\n",
|
|
"plt.plot([cyprus_gdp_per_capita, cyprus_gdp_per_capita], [0, cyprus_predicted_life_satisfaction], \"r--\")\n",
|
|
"plt.text(25000, 5.0, r\"Prediction = 5.96\", fontsize=14, color=\"b\")\n",
|
|
"plt.plot(cyprus_gdp_per_capita, cyprus_predicted_life_satisfaction, \"ro\")\n",
|
|
"save_fig('cyprus_prediction_plot')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"sample_data[7:10]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"(5.1+5.7+6.5)/3"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 17,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"backup = oecd_bli, gdp_per_capita\n",
|
|
"\n",
|
|
"def prepare_country_stats(oecd_bli, gdp_per_capita):\n",
|
|
" return sample_data\n",
|
|
"\n",
|
|
"# Code example\n",
|
|
"########################################################################\n",
|
|
"import sklearn\n",
|
|
"import numpy as np\n",
|
|
"import pandas as pd\n",
|
|
"\n",
|
|
"# Load the data\n",
|
|
"oecd_bli = pd.read_csv(datapath+\"oecd_bli_2015.csv\", thousands=',')\n",
|
|
"gdp_per_capita = pd.read_csv(datapath+\"gdp_per_capita.csv\", thousands=',',delimiter='\\t',\n",
|
|
" encoding='latin1', na_values=\"n/a\")\n",
|
|
"\n",
|
|
"# Prepare the data\n",
|
|
"country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)\n",
|
|
"X = np.c_[country_stats[\"GDP per capita\"]]\n",
|
|
"y = np.c_[country_stats[\"Life satisfaction\"]]\n",
|
|
"\n",
|
|
"# Visualize the data\n",
|
|
"country_stats.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction')\n",
|
|
"plt.show()\n",
|
|
"\n",
|
|
"# Select a linear model\n",
|
|
"lin_reg_model = sklearn.linear_model.LinearRegression()\n",
|
|
"\n",
|
|
"# Train the model\n",
|
|
"lin_reg_model.fit(X, y)\n",
|
|
"\n",
|
|
"# Make a prediction for Cyprus\n",
|
|
"X_new = [[22587]] # Cyprus' GDP per capita\n",
|
|
"print(lin_reg_model.predict(X_new)) # outputs [[ 5.96242338]]\n",
|
|
"########################################################################\n",
|
|
"\n",
|
|
"oecd_bli, gdp_per_capita = backup"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 18,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"missing_data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 19,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"position_text2 = {\n",
|
|
" \"Brazil\": (1000, 9.0),\n",
|
|
" \"Mexico\": (11000, 9.0),\n",
|
|
" \"Chile\": (25000, 9.0),\n",
|
|
" \"Czech Republic\": (35000, 9.0),\n",
|
|
" \"Norway\": (60000, 3),\n",
|
|
" \"Switzerland\": (72000, 3.0),\n",
|
|
" \"Luxembourg\": (90000, 3.0),\n",
|
|
"}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 20,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"sample_data.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(8,3))\n",
|
|
"plt.axis([0, 110000, 0, 10])\n",
|
|
"\n",
|
|
"for country, pos_text in position_text2.items():\n",
|
|
" pos_data_x, pos_data_y = missing_data.loc[country]\n",
|
|
" plt.annotate(country, xy=(pos_data_x, pos_data_y), xytext=pos_text,\n",
|
|
" arrowprops=dict(facecolor='black', width=0.5, shrink=0.1, headwidth=5))\n",
|
|
" plt.plot(pos_data_x, pos_data_y, \"rs\")\n",
|
|
"\n",
|
|
"X=np.linspace(0, 110000, 1000)\n",
|
|
"plt.plot(X, t0 + t1*X, \"b:\")\n",
|
|
"\n",
|
|
"lin_reg_full = linear_model.LinearRegression()\n",
|
|
"Xfull = np.c_[full_country_stats[\"GDP per capita\"]]\n",
|
|
"yfull = np.c_[full_country_stats[\"Life satisfaction\"]]\n",
|
|
"lin_reg_full.fit(Xfull, yfull)\n",
|
|
"\n",
|
|
"t0full, t1full = lin_reg_full.intercept_[0], lin_reg_full.coef_[0][0]\n",
|
|
"X = np.linspace(0, 110000, 1000)\n",
|
|
"plt.plot(X, t0full + t1full * X, \"k\")\n",
|
|
"\n",
|
|
"save_fig('representative_training_data_scatterplot')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 21,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"full_country_stats.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction', figsize=(8,3))\n",
|
|
"plt.axis([0, 110000, 0, 10])\n",
|
|
"\n",
|
|
"from sklearn import preprocessing\n",
|
|
"from sklearn import pipeline\n",
|
|
"\n",
|
|
"poly = preprocessing.PolynomialFeatures(degree=60, include_bias=False)\n",
|
|
"scaler = preprocessing.StandardScaler()\n",
|
|
"lin_reg2 = linear_model.LinearRegression()\n",
|
|
"\n",
|
|
"pipeline_reg = pipeline.Pipeline([('poly', poly), ('scal', scaler), ('lin', lin_reg2)])\n",
|
|
"pipeline_reg.fit(Xfull, yfull)\n",
|
|
"curve = pipeline_reg.predict(X[:, np.newaxis])\n",
|
|
"plt.plot(X, curve)\n",
|
|
"save_fig('overfitting_model_plot')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 22,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"full_country_stats.loc[[c for c in full_country_stats.index if \"W\" in c.upper()]][\"Life satisfaction\"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 23,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"gdp_per_capita.loc[[c for c in gdp_per_capita.index if \"W\" in c.upper()]].head()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 24,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure(figsize=(8,3))\n",
|
|
"\n",
|
|
"plt.xlabel(\"GDP per capita\")\n",
|
|
"plt.ylabel('Life satisfaction')\n",
|
|
"\n",
|
|
"plt.plot(list(sample_data[\"GDP per capita\"]), list(sample_data[\"Life satisfaction\"]), \"bo\")\n",
|
|
"plt.plot(list(missing_data[\"GDP per capita\"]), list(missing_data[\"Life satisfaction\"]), \"rs\")\n",
|
|
"\n",
|
|
"X = np.linspace(0, 110000, 1000)\n",
|
|
"plt.plot(X, t0full + t1full * X, \"r--\", label=\"Linear model on all data\")\n",
|
|
"plt.plot(X, t0 + t1*X, \"b:\", label=\"Linear model on partial data\")\n",
|
|
"\n",
|
|
"ridge = linear_model.Ridge(alpha=10**9.5)\n",
|
|
"Xsample = np.c_[sample_data[\"GDP per capita\"]]\n",
|
|
"ysample = np.c_[sample_data[\"Life satisfaction\"]]\n",
|
|
"ridge.fit(Xsample, ysample)\n",
|
|
"t0ridge, t1ridge = ridge.intercept_[0], ridge.coef_[0][0]\n",
|
|
"plt.plot(X, t0ridge + t1ridge * X, \"b\", label=\"Regularized linear model on partial data\")\n",
|
|
"\n",
|
|
"plt.legend(loc=\"lower right\")\n",
|
|
"plt.axis([0, 110000, 0, 10])\n",
|
|
"save_fig('ridge_model_plot')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 25,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"backup = oecd_bli, gdp_per_capita\n",
|
|
"\n",
|
|
"def prepare_country_stats(oecd_bli, gdp_per_capita):\n",
|
|
" return sample_data\n",
|
|
"\n",
|
|
"# Code example\n",
|
|
"########################################################################\n",
|
|
"from sklearn import neighbors\n",
|
|
"import numpy as np\n",
|
|
"import pandas as pd\n",
|
|
"\n",
|
|
"# Load the data\n",
|
|
"oecd_bli = pd.read_csv(datapath+\"oecd_bli_2015.csv\", thousands=',')\n",
|
|
"gdp_per_capita = pd.read_csv(datapath+\"gdp_per_capita.csv\", thousands=',',delimiter='\\t',\n",
|
|
" encoding='latin1', na_values=\"n/a\")\n",
|
|
"\n",
|
|
"# Prepare the data\n",
|
|
"country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)\n",
|
|
"X = np.c_[country_stats[\"GDP per capita\"]]\n",
|
|
"y = np.c_[country_stats[\"Life satisfaction\"]]\n",
|
|
"\n",
|
|
"# Visualize the data\n",
|
|
"country_stats.plot(kind='scatter', x=\"GDP per capita\", y='Life satisfaction')\n",
|
|
"plt.show()\n",
|
|
"\n",
|
|
"# Select a k-neighboors regression model\n",
|
|
"k_neigh_reg_model = neighbors.KNeighborsRegressor(n_neighbors=3)\n",
|
|
"\n",
|
|
"# Train the model\n",
|
|
"k_neigh_reg_model.fit(X, y)\n",
|
|
"\n",
|
|
"# Make a prediction for Cyprus\n",
|
|
"X_new = [[22587]] # Cyprus' GDP per capita\n",
|
|
"print(lin_reg_model.predict(X_new)) # outputs [[ 5.96242338]]\n",
|
|
"########################################################################\n",
|
|
"\n",
|
|
"oecd_bli, gdp_per_capita = backup"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.5.1"
|
|
},
|
|
"toc": {
|
|
"toc_cell": false,
|
|
"toc_number_sections": false,
|
|
"toc_section_display": "block",
|
|
"toc_threshold": 6,
|
|
"toc_window_display": true
|
|
},
|
|
"toc_position": {
|
|
"height": "61px",
|
|
"left": "1135.97px",
|
|
"right": "20px",
|
|
"top": "120px",
|
|
"width": "213px"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0
|
|
}
|