new file: gitignore

new file:   primes/src/sive.c
main
ketrptr 2024-12-02 20:42:10 +01:00
parent c64557a334
commit d5e6bacced
4 changed files with 203 additions and 0 deletions

6
gitignore Normal file
View File

@ -0,0 +1,6 @@
*
!**/*.c
!**/*.h
# !**/**/*.h
# !**/**/*.c
!**/Makefile

8
primes/Makefile Normal file
View File

@ -0,0 +1,8 @@
CFALGSD=-Wall -Wextra -g -ggdb
CFALGSF=-Wall -Wextra -Ofast -march=native -mtune=native -funroll-all-loops
CC = gcc
fast: src/sive.c
$(CC) $(CFALGSF) src/sive.c -o fastOut
debug: src/sive.c
$(CC) $(CFALGSD) src/sive.c -o debugOut

189
primes/src/sive.c Normal file
View File

@ -0,0 +1,189 @@
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
typedef uint64_t WORD;
typedef uint8_t BOOL;
const BOOL false = 0;
const BOOL true = ~false;
// const WORD limit = 542;
// const WORD limit = 1e2;
const WORD limit = 1e9;
const WORD nr = 78498;
// Sive o Atkins hit wheel
const WORD s[] = {1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59};
const WORD wheelLen = 16;
int main() {
BOOL *isPrime = calloc(limit, sizeof(WORD));
assert(isPrime != NULL);
/*
// Initialize the sieve with enough wheels to include limit:
for n 60 × w + x where w {0,1,...,limit ÷ 60}, x s:
is_prime(n) false
*/
for (WORD w = 0; w < limit / 60; w++) {
for (WORD i = 0; i < wheelLen; i++) {
WORD n = 60 * w + s[i];
if (n >= limit)
break;
isPrime[n] = false;
}
}
/*
* // Put in candidate primes:
// integers which have an odd number of
// representations by certain quadratic forms.
// Algorithm step 3.1:
for n limit, n 4x²+y² where x {1,2,...} and y {1,3,...} // all x's odd
y's if n mod 60 {1,13,17,29,37,41,49,53}: is_prime(n) ¬is_prime(n) //
toggle state
*/
WORD mask1[] = {1, 13, 17, 29, 37, 41, 49, 53};
WORD maskLen1 = 8;
for (WORD x = 1; 4 * x * x < limit; x += 1) {
for (WORD y = 1; 1; y += 2) {
WORD n = 4 * x * x + y * y;
if (n >= limit) {
break;
}
WORD mod = n % 60;
for (WORD i = 0; i < maskLen1; i++) {
if (mod == mask1[i]) {
isPrime[n] = ~isPrime[n];
// printf("3.1 %lu is %s prime\n", n, (isPrime[n]) ? "" : "not");
break;
}
}
}
}
/*
// Algorithm step 3.2:
for n limit, n 3x²+y² where x {1,3,...} and y {2,4,...} // only odd x's
if n mod 60 {7,19,31,43}: // and even y's
is_prime(n) ¬is_prime(n) // toggle state
*/
WORD mask2[] = {7, 19, 31, 43};
WORD maskLen2 = 4;
for (WORD x = 1; x * x * 3 < limit; x += 2) {
for (WORD y = 2; y * y < limit; y += 2) {
WORD n = 3 * x * x + y * y;
if (n >= limit) {
break;
}
WORD mod = n % 60;
for (WORD i = 0; i < maskLen2; i++) {
if (mod == mask2[i]) {
isPrime[n] = ~isPrime[n];
// printf("3.2 %lu is %s prime\n", n, (isPrime[n]) ? "" : "not");
break;
}
}
}
}
/*
// Algorithm step 3.3:
for n limit, n 3x²-y² where x {2,3,...} and y {x-1,x-3,...,1} //all
even/odd if n mod 60 {11,23,47,59}: //
odd/even combos is_prime(n) ¬is_prime(n) // toggle state
*/
WORD mask3[] = {11, 23, 47, 59};
WORD maskLen3 = 4;
for (WORD x = 2; (3 * x * x) - ((x - 1) * (x - 1)) < limit; x += 1) {
WORD y = x - 1;
while (y >= 1) {
// printf("x: %lu, y:%lu\n", x, y);
// sleep(1);
WORD n = 3 * x * x - y * y;
if (n >= limit) {
// breakOuter = true;
if (y < 2) {
break;
}
y -= 2;
continue;
}
WORD mod = n % 60;
for (WORD i = 0; i < maskLen3; i++) {
if (mod == mask3[i]) {
isPrime[n] = ~isPrime[n];
// printf("3.3 %lu is %s prime\n", n, (isPrime[n]) ? "" : "not");
break;
}
}
y = (y > 2) ? y - 2 : 0;
}
}
/*
*
// Eliminate composites by sieving, only for those occurrences on the wheel:
for n² limit, n 60 × w + x where w {0,1,...}, x s, n 7:
if is_prime(n):
// n is prime, omit multiples of its square; this is sufficient
// because square-free composites can't get on this list
for c limit, c n² × (60 × w + x) where w {0,1,...}, x s:
is_prime(c) false
*/
for (WORD w = 0; w / 60 < limit; w++) {
WORD n = ~0;
for (WORD i = 0; i < wheelLen; i++) {
n = 60 * w + s[i];
if (n * n >= limit) {
break;
}
// or break;?
if (n < limit && isPrime[n]) {
for (WORD ww = 0; n * n * (60 * ww) < limit; ww++) {
WORD c;
for (WORD ii = 0; ii < wheelLen; ii++) {
c = n * n * (60 * ww + s[ii]);
if (c < limit) {
isPrime[c] = false;
// printf("elim: %lu is %s prime\n", c, (isPrime[c]) ? "" :
// "not");
}
}
}
}
}
}
// isPrime[2] = true;
// isPrime[3] = true;
// isPrime[5] = true;
printf("2 3 5");
WORD sum = 3;
for (WORD w = 0; w / 60 < limit; w++) {
WORD n = ~0;
for (WORD i = 0; i < wheelLen; i++) {
n = 60 * w + s[i];
if (n < 7)
continue;
if (n >= limit)
break;
if (isPrime[n]) {
// printf(" %lu ", n);
sum += 1;
}
}
}
printf("\n");
printf("%lu\n", sum);
return 0;
}

BIN
ub10/a.out Executable file

Binary file not shown.