import numpy as np class truss: n: int s: int nodes: np.ndarray externalForces: list[list] beams: np.ndarray beamForces: np.ndarray # n: number nodes # s: number beams # externalForces: list of externalForces each force is list with [Fx, Fy, NodeIndex] so a single force in y direction on node 3 would look like: [[0,F,3]] (zero indexed!!) # nodeCoordinates: noarray of nodes x and y coordinates: [[x1,y1],[x2,y2]] # beams: ndarray of beams every beam contains node indices it connects. e.g. beam0 connnects nodes 0 and 1 -> beams= [[0,1]] def __init__( self, s: int, n: int, externalForces: list, nodeCoordinates: np.ndarray, beams: np.ndarray, ): self.n = n self.s = s self.externalForces = externalForces self.nodes = nodeCoordinates self.beams = beams def solve(self): # coeficient matrices A in x and y dir. with #beams rows and #nodes cols # Ax,Ay is padded because numpy requires square coefficient matrix # Ax and Ay are concatenated efter lineaer system is constructed Ax = np.zeros((self.n, 2 * self.n)) # lhsx Ay = np.zeros((self.n, 2 * self.n)) # lhsy # rhs vectors all zero or external force bx = np.zeros(self.n) by = np.zeros((self.n)) for ef in self.externalForces: bx[ef[2]] = ef[0] by[ef[2]] = ef[1] # construct lgs for ni in range(len(self.nodes)): # for every node index ni for b in np.where(self.beams == ni)[ 0 ]: # for every beam connected to node[ni] (x1, y1) = self.nodes[self.beams[b][0]] (x2, y2) = self.nodes[self.beams[b][1]] # find deltaX and deltaY of beam to calculate force components vy, vx = 0, 0 if ( b < (2 * ni) and ni > 0 ): # find force direction for beams on left side of node vy = y1 - y2 vx = x1 - x2 else: # different force direction for nodes on right side of node vy = y2 - y1 vx = x2 - x1 lv = np.sqrt(vx**2 + vy**2) # |v| ux = ((1 / lv) if lv != 0 else 0) * vx # (v^)x unit vector X uy = ((1 / lv) if lv != 0 else 0) * vy # (v^)y unit vector Y Ax[ni, b] = ux # koeffizient stabkraft F[b] an node[ni] in x richtung Ay[ni, b] = uy # koeffizient stabkraft F[b] an node[ni] in y richtung A = np.concatenate((Ax, Ay), axis=0) b = np.concatenate((bx, by), axis=0) self.beamForces = np.linalg.lstsq(A, b)[0] def print(self): [ print(f"F{i+1}: {n:#.3g} kN") for i, n in enumerate(self.beamForces) if n != 0 ] # ignore padding collumns ### sample useage ## TM1 Aufgabe 164 if __name__ == "__main__": n = 15 # nr. nodes s = 2 * n - 3 # 27 beams(0-26) + F[27]+ Fa[28] + Fb[29] F = 28 Fa = (((n - 3) / 2) * F) / 2 Fb = Fa ## Node x and y coordinates nodes = np.array([[i, 0 if i % 2 == 0 else 2] for i in range(n)]) # ExternalForces (x,y,nodeIndex) externalForces = [ [0, Fa, 0], [0, -F, 2], [0, -F, 4], [0, -F, 6], [0, -F, 8], [0, -F, 10], [0, -F, 12], [0, Fb, 14], ] ## beams each row represents a beam and contains the node indices it connects to beams = np.array( [ [ x / 2 if x % 2 == 0 else (x - 1) / 2, x / 2 + 1 if x % 2 == 0 else (x - 1) / 2 + 2, ] for x in range(s) ], dtype=int, ) t = truss(s, n, externalForces, nodes, beams) t.solve() t.print()