Sol1..4
This commit is contained in:
parent
00e5a5e84e
commit
44e0f0503a
63
Sol1_omni.py
Executable file
63
Sol1_omni.py
Executable file
@ -0,0 +1,63 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from WheeledRobot import OmniRobotEnv
|
||||||
|
|
||||||
|
# OmniRobot kinematics
|
||||||
|
a1 = 0.0; b1 = 0.0; l1 = 0.5
|
||||||
|
a2 = (2/3)*np.pi; b2 = 0.0; l2 = 0.5
|
||||||
|
a3 = (4/3)*np.pi; b3 = 0.0; l3 = 0.5
|
||||||
|
r = 0.1
|
||||||
|
|
||||||
|
# Kinematics matrix
|
||||||
|
J = np.array([
|
||||||
|
[1/r*np.sin(a1+b1), -1/r*np.cos(a1+b1), -l1/r*np.cos(b1)],
|
||||||
|
[1/r*np.sin(a2+b2), -1/r*np.cos(a2+b2), -l2/r*np.cos(b2)],
|
||||||
|
[1/r*np.sin(a3+b3), -1/r*np.cos(a3+b3), -l3/r*np.cos(b3)]
|
||||||
|
])
|
||||||
|
F = np.linalg.inv(J)
|
||||||
|
|
||||||
|
def controller_omni(t, X_I, dX_I):
|
||||||
|
# example controller outputs
|
||||||
|
radius = 2; period = 10
|
||||||
|
# dX_R_des = np.array([[2*np.pi*radius/period],[0],[2*np.pi/period]])
|
||||||
|
# dX_R_des = np.array([[1],[0],[0]])
|
||||||
|
#dX_R_des = np.array([[0],[1],[0]])
|
||||||
|
dX_R_des = np.array([[0],[0],[1]])
|
||||||
|
|
||||||
|
U = J @ dX_R_des
|
||||||
|
return U
|
||||||
|
|
||||||
|
def run_simulation():
|
||||||
|
"""Run simulation using Gymnasium environment"""
|
||||||
|
env = OmniRobotEnv(render_mode="human")
|
||||||
|
observation, _ = env.reset()
|
||||||
|
|
||||||
|
print("Starting Omnidirectional Robot Simulation")
|
||||||
|
print("Controller: Circular motion")
|
||||||
|
|
||||||
|
for step in range(200):
|
||||||
|
# Extract controller inputs from observation
|
||||||
|
time = observation[6] # Current time
|
||||||
|
X_I = observation[:3].reshape(-1, 1) # State [x, y, theta]
|
||||||
|
dX_I = observation[3:6].reshape(-1, 1) # Derivatives [dx, dy, dtheta]
|
||||||
|
|
||||||
|
# Call original controller
|
||||||
|
U = controller_omni(time, X_I, dX_I)
|
||||||
|
|
||||||
|
# Step environment
|
||||||
|
observation, reward, terminated, truncated, _ = env.step(U.flatten())
|
||||||
|
|
||||||
|
# Render the environment
|
||||||
|
env.render()
|
||||||
|
|
||||||
|
if terminated or truncated:
|
||||||
|
print(f"Simulation ended at step {step}")
|
||||||
|
break
|
||||||
|
|
||||||
|
input("Press Enter to close the simulation window...")
|
||||||
|
env.close()
|
||||||
|
print("Simulation completed")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
run_simulation()
|
61
Sol2_tank.py
Executable file
61
Sol2_tank.py
Executable file
@ -0,0 +1,61 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from WheeledRobot import TankRobotEnv
|
||||||
|
|
||||||
|
# TankRobot kinematics
|
||||||
|
b = 1
|
||||||
|
r = 0.1
|
||||||
|
|
||||||
|
# wheel equations
|
||||||
|
J = np.array([
|
||||||
|
[+1/r, 0, -b/(2*r)],
|
||||||
|
[-1/r, 0, -b/(2*r)]
|
||||||
|
])
|
||||||
|
F = np.linalg.pinv(J)
|
||||||
|
|
||||||
|
def controller_tank(t, X_I, dX_I):
|
||||||
|
# example controller outputs
|
||||||
|
radius = 2;
|
||||||
|
period = 10
|
||||||
|
# dX_R_des = np.array([[2*np.pi*radius/period],[0],[2*np.pi/period]])
|
||||||
|
# dX_R_des = np.array([[1],[0],[0]])
|
||||||
|
dX_R_des = np.array([[0],[1],[0]])
|
||||||
|
# dX_R_des = np.array([[0],[0],[1]])
|
||||||
|
|
||||||
|
U = J @ dX_R_des
|
||||||
|
return U
|
||||||
|
|
||||||
|
def run_simulation():
|
||||||
|
"""Run simulation using Gymnasium environment"""
|
||||||
|
env = TankRobotEnv(render_mode="human")
|
||||||
|
observation, _ = env.reset()
|
||||||
|
|
||||||
|
print("Starting Tank Robot Simulation")
|
||||||
|
print("Controller: Circular motion")
|
||||||
|
|
||||||
|
for step in range(1000):
|
||||||
|
# Extract controller inputs from observation
|
||||||
|
time = observation[6] # Current time
|
||||||
|
X_I = observation[:3].reshape(-1, 1) # State [x, y, theta]
|
||||||
|
dX_I = observation[3:6].reshape(-1, 1) # Derivatives [dx, dy, dtheta]
|
||||||
|
|
||||||
|
# Call original controller
|
||||||
|
U = controller_tank(time, X_I, dX_I)
|
||||||
|
|
||||||
|
# Step environment
|
||||||
|
observation, reward, terminated, truncated, _ = env.step(U.flatten())
|
||||||
|
|
||||||
|
# Render the environment
|
||||||
|
env.render()
|
||||||
|
|
||||||
|
if terminated or truncated:
|
||||||
|
print(f"Simulation ended at step {step}")
|
||||||
|
break
|
||||||
|
|
||||||
|
input("Press Enter to close the simulation window...")
|
||||||
|
env.close()
|
||||||
|
print("Simulation completed")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
run_simulation()
|
75
Sol3_mecanum.py
Executable file
75
Sol3_mecanum.py
Executable file
@ -0,0 +1,75 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from WheeledRobot import MecanumRobotEnv
|
||||||
|
|
||||||
|
# MecanumRobot kinematics
|
||||||
|
l1 = np.array([+0.5, +0.5]); f1 = np.array([+1, +1])/np.sqrt(2); d1 = np.array([+1, 0])
|
||||||
|
l2 = np.array([-0.5, +0.5]); f2 = np.array([-1, +1])/np.sqrt(2); d2 = np.array([+1, 0])
|
||||||
|
l3 = np.array([-0.5, -0.5]); f3 = np.array([-1, -1])/np.sqrt(2); d3 = np.array([-1, 0])
|
||||||
|
l4 = np.array([+0.5, -0.5]); f4 = np.array([+1, -1])/np.sqrt(2); d4 = np.array([-1, 0])
|
||||||
|
r = 0.1
|
||||||
|
|
||||||
|
# wheel equations
|
||||||
|
J11 = f1[1]/(r*d1[0]*f1[1]-r*d1[1]*f1[0])
|
||||||
|
J21 = f2[1]/(r*d2[0]*f2[1]-r*d2[1]*f2[0])
|
||||||
|
J31 = f3[1]/(r*d3[0]*f3[1]-r*d3[1]*f3[0])
|
||||||
|
J41 = f4[1]/(r*d4[0]*f4[1]-r*d4[1]*f4[0])
|
||||||
|
J12 = -f1[0]/(r*d1[0]*f1[1]-r*d1[1]*f1[0])
|
||||||
|
J22 = -f2[0]/(r*d2[0]*f2[1]-r*d2[1]*f2[0])
|
||||||
|
J32 = -f3[0]/(r*d3[0]*f3[1]-r*d3[1]*f3[0])
|
||||||
|
J42 = -f4[0]/(r*d4[0]*f4[1]-r*d4[1]*f4[0])
|
||||||
|
J13 = (-f1[1]*l1[1]-f1[0]*l1[0])/(r*d1[0]*f1[1]-r*d1[1]*f1[0])
|
||||||
|
J23 = (-f2[1]*l2[1]-f2[0]*l2[0])/(r*d2[0]*f2[1]-r*d2[1]*f2[0])
|
||||||
|
J33 = (-f3[1]*l3[1]-f3[0]*l3[0])/(r*d3[0]*f3[1]-r*d3[1]*f3[0])
|
||||||
|
J43 = (-f4[1]*l4[1]-f4[0]*l4[0])/(r*d4[0]*f4[1]-r*d4[1]*f4[0])
|
||||||
|
J = np.array([[J11, J12, J13], [J21, J22, J23], [J31, J32, J33], [J41, J42, J43]])
|
||||||
|
|
||||||
|
# forward differential kinematics
|
||||||
|
F = np.linalg.pinv(J)
|
||||||
|
|
||||||
|
def controller_mecanum(t, X_I, dX_I):
|
||||||
|
# example controller outputs
|
||||||
|
radius = 2; period = 10
|
||||||
|
dX_R_des = np.array([[2*np.pi*radius/period],[0],[2*np.pi/period]])
|
||||||
|
#dX_R_des = np.array([[1],[0],[0]])
|
||||||
|
#dX_R_des = np.array([[0],[1],[0]])
|
||||||
|
#dX_R_des = np.array([[0],[0],[1]])
|
||||||
|
|
||||||
|
U = J @ dX_R_des
|
||||||
|
return U
|
||||||
|
|
||||||
|
def run_simulation():
|
||||||
|
"""Run simulation using Gymnasium environment"""
|
||||||
|
env = MecanumRobotEnv(render_mode="human")
|
||||||
|
observation, _ = env.reset()
|
||||||
|
|
||||||
|
print("Starting Mecanum Robot Simulation")
|
||||||
|
print("Controller: Circular motion")
|
||||||
|
print(f"Jacobian matrix J:\n{J}")
|
||||||
|
|
||||||
|
for step in range(1000):
|
||||||
|
# Extract controller inputs from observation
|
||||||
|
time = observation[6] # Current time
|
||||||
|
X_I = observation[:3].reshape(-1, 1) # State [x, y, theta]
|
||||||
|
dX_I = observation[3:6].reshape(-1, 1) # Derivatives [dx, dy, dtheta]
|
||||||
|
|
||||||
|
# Call original controller
|
||||||
|
U = controller_mecanum(time, X_I, dX_I)
|
||||||
|
|
||||||
|
# Step environment
|
||||||
|
observation, reward, terminated, truncated, _ = env.step(U.flatten())
|
||||||
|
|
||||||
|
# Render the environment
|
||||||
|
env.render()
|
||||||
|
|
||||||
|
if terminated or truncated:
|
||||||
|
print(f"Simulation ended at step {step}")
|
||||||
|
break
|
||||||
|
|
||||||
|
input("Press Enter to close the simulation window...")
|
||||||
|
env.close()
|
||||||
|
print("Simulation completed")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
run_simulation()
|
58
Sol4_ackerman.py
Executable file
58
Sol4_ackerman.py
Executable file
@ -0,0 +1,58 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from WheeledRobot import AckermanRobotEnv
|
||||||
|
|
||||||
|
# AckermanRobot kinematics
|
||||||
|
r = 0.1
|
||||||
|
|
||||||
|
# wheel equations function
|
||||||
|
def J(dX_R):
|
||||||
|
"""Transform desired robot velocities to control inputs"""
|
||||||
|
U = np.array([[1/r*dX_R[0,0]], [dX_R[0,0]/dX_R[2,0]]])
|
||||||
|
return U
|
||||||
|
|
||||||
|
def controller_ackerman(t, X_I, dX_I):
|
||||||
|
# example controller outputs
|
||||||
|
radius = 2; period = 10
|
||||||
|
dX_R_des = np.array([[2*np.pi*radius/period],[0],[2*np.pi/period]])
|
||||||
|
#dX_R_des = np.array([[1],[0],[0]])
|
||||||
|
#dX_R_des = np.array([[0],[1],[0]])
|
||||||
|
#dX_R_des = np.array([[0],[0],[1]])
|
||||||
|
|
||||||
|
U = J(dX_R_des)
|
||||||
|
return U
|
||||||
|
|
||||||
|
def run_simulation():
|
||||||
|
"""Run simulation using Gymnasium environment"""
|
||||||
|
env = AckermanRobotEnv(render_mode="human")
|
||||||
|
observation, _ = env.reset()
|
||||||
|
|
||||||
|
print("Starting Ackermann Robot Simulation")
|
||||||
|
print("Controller: Circular motion")
|
||||||
|
|
||||||
|
for step in range(1000):
|
||||||
|
# Extract controller inputs from observation
|
||||||
|
time = observation[6] # Current time
|
||||||
|
X_I = observation[:3].reshape(-1, 1) # State [x, y, theta]
|
||||||
|
dX_I = observation[3:6].reshape(-1, 1) # Derivatives [dx, dy, dtheta]
|
||||||
|
|
||||||
|
# Call original controller
|
||||||
|
U = controller_ackerman(time, X_I, dX_I)
|
||||||
|
|
||||||
|
# Step environment
|
||||||
|
observation, reward, terminated, truncated, _ = env.step(U.flatten())
|
||||||
|
|
||||||
|
# Render the environment
|
||||||
|
env.render()
|
||||||
|
|
||||||
|
if terminated or truncated:
|
||||||
|
print(f"Simulation ended at step {step}")
|
||||||
|
break
|
||||||
|
|
||||||
|
input("Press Enter to close the simulation window...")
|
||||||
|
env.close()
|
||||||
|
print("Simulation completed")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
run_simulation()
|
Loading…
x
Reference in New Issue
Block a user