Ex8..9
This commit is contained in:
parent
b37a0ec70b
commit
5eef695e83
71
Ex8_tank_linear.py
Executable file
71
Ex8_tank_linear.py
Executable file
@ -0,0 +1,71 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
from WheeledRobot import TankRobotEnv
|
||||
|
||||
# TankRobot kinematics
|
||||
b = 1
|
||||
r = 0.1
|
||||
|
||||
# Wheel equations
|
||||
J = np.array([
|
||||
[+1/r, 0, -b/(2*r)],
|
||||
[-1/r, 0, -b/(2*r)]
|
||||
])
|
||||
F = np.linalg.pinv(J)
|
||||
|
||||
def controller_tank_linear(t, X_I, dX_I, target_position):
|
||||
"""Enhanced linear control with polar coordinates and dynamic target"""
|
||||
|
||||
...
|
||||
|
||||
# Calculate control input
|
||||
U = J @ dX_R_des
|
||||
return U
|
||||
|
||||
def run_simulation():
|
||||
"""Run simulation using Gymnasium environment with enhanced linear control to dynamic target"""
|
||||
|
||||
# Initialize environment with fixed target for reproducible results
|
||||
# You can set random_target=True for random target generation
|
||||
env = TankRobotEnv(render_mode="human", random_target=False)
|
||||
observation, _ = env.reset()
|
||||
|
||||
# Expand render bounds to show target position (default target is at [10,5])
|
||||
env.set_render_bounds((-2, 12), (-2, 8))
|
||||
|
||||
print("Starting Tank Robot Enhanced Linear Control Simulation")
|
||||
print("Controller: Enhanced linear control with polar coordinates to dynamic target")
|
||||
print(f"Target position: [{observation[7]:.2f}, {observation[8]:.2f}, {observation[9]:.2f}]")
|
||||
|
||||
for step in range(1000):
|
||||
# Extract controller inputs from observation
|
||||
# New observation format: [x, y, theta, dx, dy, dtheta, time, target_x, target_y, target_theta]
|
||||
time = observation[6] # Current time
|
||||
X_I = observation[:3].reshape(-1, 1) # State [x, y, theta]
|
||||
dX_I = observation[3:6].reshape(-1, 1) # Derivatives [dx, dy, dtheta]
|
||||
target_position = observation[7:10] # Target [target_x, target_y, target_theta]
|
||||
|
||||
# Call enhanced linear controller with dynamic target
|
||||
U = controller_tank_linear(time, X_I, dX_I, target_position)
|
||||
|
||||
# Step environment
|
||||
observation, reward, terminated, truncated, _ = env.step(U.flatten())
|
||||
|
||||
# Render the environment
|
||||
env.render()
|
||||
|
||||
# Check if target reached
|
||||
if terminated:
|
||||
print(f"Target reached at step {step}! Reward: {reward:.2f}")
|
||||
break
|
||||
elif truncated:
|
||||
print(f"Maximum steps reached at step {step}")
|
||||
break
|
||||
|
||||
input("Press Enter to close the simulation window...")
|
||||
env.close()
|
||||
print("Simulation completed")
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_simulation()
|
76
Ex9_tank_l1.py
Executable file
76
Ex9_tank_l1.py
Executable file
@ -0,0 +1,76 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
from WheeledRobot import TankRobotEnv
|
||||
|
||||
# TankRobot kinematics
|
||||
b = 1
|
||||
r = 0.1
|
||||
|
||||
# Wheel equations
|
||||
J = np.array([
|
||||
[+1/r, 0, -b/(2*r)],
|
||||
[-1/r, 0, -b/(2*r)]
|
||||
])
|
||||
F = np.linalg.pinv(J)
|
||||
|
||||
def controller_tank_l1(t, X_I, dX_I, target_position):
|
||||
"""L1 adaptive control with path planning and dynamic target"""
|
||||
|
||||
# Controller parameters
|
||||
dx_R_max = 3
|
||||
L0 = 4
|
||||
L1 = 4
|
||||
|
||||
...
|
||||
|
||||
# Calculate control input
|
||||
U = J @ dX_R_des
|
||||
return U
|
||||
|
||||
def run_simulation():
|
||||
"""Run simulation using Gymnasium environment with L1 adaptive control to dynamic target"""
|
||||
|
||||
# Initialize environment with fixed target for reproducible results
|
||||
# You can set random_target=True for random target generation
|
||||
env = TankRobotEnv(render_mode="human", random_target=False)
|
||||
observation, _ = env.reset()
|
||||
|
||||
# Expand render bounds to show target position (default target is at [10,5])
|
||||
env.set_render_bounds((-2, 12), (-2, 8))
|
||||
|
||||
print("Starting Tank Robot L1 Adaptive Control Simulation")
|
||||
print("Controller: L1 adaptive control with path planning to dynamic target")
|
||||
print(f"Target position: [{observation[7]:.2f}, {observation[8]:.2f}, {observation[9]:.2f}]")
|
||||
|
||||
for step in range(1000):
|
||||
# Extract controller inputs from observation
|
||||
# New observation format: [x, y, theta, dx, dy, dtheta, time, target_x, target_y, target_theta]
|
||||
time = observation[6] # Current time
|
||||
X_I = observation[:3].reshape(-1, 1) # State [x, y, theta]
|
||||
dX_I = observation[3:6].reshape(-1, 1) # Derivatives [dx, dy, dtheta]
|
||||
target_position = observation[7:10] # Target [target_x, target_y, target_theta]
|
||||
|
||||
# Call L1 adaptive controller with dynamic target
|
||||
U = controller_tank_l1(time, X_I, dX_I, target_position)
|
||||
|
||||
# Step environment
|
||||
observation, reward, terminated, truncated, _ = env.step(U.flatten())
|
||||
|
||||
# Render the environment
|
||||
env.render()
|
||||
|
||||
# Check if target reached
|
||||
if terminated:
|
||||
print(f"Target reached at step {step}! Reward: {reward:.2f}")
|
||||
break
|
||||
elif truncated:
|
||||
print(f"Maximum steps reached at step {step}")
|
||||
break
|
||||
|
||||
input("Press Enter to close the simulation window...")
|
||||
env.close()
|
||||
print("Simulation completed")
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_simulation()
|
Loading…
x
Reference in New Issue
Block a user