Ex5..6
This commit is contained in:
parent
44e0f0503a
commit
90244c57e6
102
Ex5_omni_bangbang.py
Executable file
102
Ex5_omni_bangbang.py
Executable file
@ -0,0 +1,102 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
from WheeledRobot import OmniRobotEnv
|
||||
|
||||
# OmniRobot kinematics
|
||||
a1 = 0.0; b1 = 0.0; l1 = 0.5
|
||||
a2 = (2/3)*np.pi; b2 = 0.0; l2 = 0.5
|
||||
a3 = (4/3)*np.pi; b3 = 0.0; l3 = 0.5
|
||||
r = 0.1
|
||||
|
||||
# Kinematics matrix
|
||||
J = np.array([
|
||||
[1/r*np.sin(a1+b1), -1/r*np.cos(a1+b1), -l1/r*np.cos(b1)],
|
||||
[1/r*np.sin(a2+b2), -1/r*np.cos(a2+b2), -l2/r*np.cos(b2)],
|
||||
[1/r*np.sin(a3+b3), -1/r*np.cos(a3+b3), -l3/r*np.cos(b3)]
|
||||
])
|
||||
F = np.linalg.inv(J)
|
||||
|
||||
def controller_omni_bangbang(t, X_I, dX_I, target_position):
|
||||
"""Bang-bang controller with dynamic target position"""
|
||||
|
||||
# maximum control velocity
|
||||
dX_I_max = np.array([[2], [2], [1]])
|
||||
|
||||
# Use target position from parameters instead of hardcoded values
|
||||
X_I_des = target_position.reshape(-1, 1)
|
||||
pos_err = X_I_des-X_I
|
||||
|
||||
# part 1 (separate X,Y,theta)
|
||||
dX_I_des = np.array([
|
||||
[dX_I_max[0,0] * np.sign(pos_err[0,0])],
|
||||
[dX_I_max[1,0] * np.sign(pos_err[1,0])],
|
||||
[dX_I_max[2,0] * np.sign(pos_err[2,0])]
|
||||
])
|
||||
|
||||
# part 3 (combined XY control)
|
||||
# dir_err = pos_err[0:2,:] / np.linalg.norm(pos_err[0:2,:])
|
||||
# dX_I_des = np.array([
|
||||
# [dX_I_max[0,0] * dir_err[0,0]],
|
||||
# [dX_I_max[1,0] * dir_err[1,0]],
|
||||
# [dX_I_max[2,0] * np.sign(pos_err[2,0])]
|
||||
# ])
|
||||
|
||||
# part 2 (stopping condition)
|
||||
if np.abs(pos_err[0,0]) < 0.1: dX_I_des[0,0] = 0
|
||||
if np.abs(pos_err[1,0]) < 0.1: dX_I_des[1,0] = 0
|
||||
if np.abs(pos_err[2,0]) < 0.01: dX_I_des[2,0] = 0
|
||||
|
||||
# coordinate transform
|
||||
R_RI = np.array([[ np.cos(X_I[2,0]), np.sin(X_I[2,0]), 0.0],
|
||||
[-np.sin(X_I[2,0]), np.cos(X_I[2,0]), 0.0],
|
||||
[ 0.0, 0.0, 1.0]])
|
||||
dX_R_des = R_RI @ dX_I_des
|
||||
U = J @ dX_R_des
|
||||
return U
|
||||
|
||||
def run_simulation():
|
||||
"""Run simulation using Gymnasium environment with bang-bang control to dynamic target"""
|
||||
# Initialize environment with fixed target to match Sol6 behavior
|
||||
# You can set random_target=True for random target generation
|
||||
env = OmniRobotEnv(render_mode="human", random_target=False)
|
||||
observation, _ = env.reset()
|
||||
|
||||
# Expand render bounds to show target position (default target is at [10,5])
|
||||
env.set_render_bounds((-2, 12), (-2, 8))
|
||||
|
||||
print("Starting Omnidirectional Robot Bang-Bang Control Simulation")
|
||||
print("Controller: Bang-bang control to dynamic target position")
|
||||
print(f"Target position: [{observation[7]:.2f}, {observation[8]:.2f}, {observation[9]:.2f}]")
|
||||
|
||||
for step in range(1000):
|
||||
# Extract controller inputs from observation
|
||||
# New observation format: [x, y, theta, dx, dy, dtheta, time, target_x, target_y, target_theta]
|
||||
time = observation[6] # Current time
|
||||
X_I = observation[:3].reshape(-1, 1) # State [x, y, theta]
|
||||
dX_I = observation[3:6].reshape(-1, 1) # Derivatives [dx, dy, dtheta]
|
||||
target_position = observation[7:10] # Target [target_x, target_y, target_theta]
|
||||
|
||||
# Call bang-bang controller with dynamic target
|
||||
U = controller_omni_bangbang(time, X_I, dX_I, target_position)
|
||||
|
||||
# Step environment
|
||||
observation, reward, terminated, truncated, _ = env.step(U.flatten())
|
||||
|
||||
# Render the environment
|
||||
env.render()
|
||||
|
||||
# Check if target reached
|
||||
if terminated:
|
||||
print(f"Target reached at step {step}! Reward: {reward:.2f}")
|
||||
break
|
||||
elif truncated:
|
||||
print(f"Maximum steps reached at step {step}")
|
||||
break
|
||||
|
||||
input("Press Enter to close the simulation window...")
|
||||
env.close()
|
||||
print("Simulation completed")
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_simulation()
|
99
Ex6_omni_pid.py
Executable file
99
Ex6_omni_pid.py
Executable file
@ -0,0 +1,99 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
from WheeledRobot import OmniRobotEnv
|
||||
|
||||
# OmniRobot kinematics
|
||||
a1 = 0.0; b1 = 0.0; l1 = 0.5
|
||||
a2 = (2/3)*np.pi; b2 = 0.0; l2 = 0.5
|
||||
a3 = (4/3)*np.pi; b3 = 0.0; l3 = 0.5
|
||||
r = 0.1
|
||||
|
||||
# Kinematics matrix
|
||||
J = np.array([
|
||||
[1/r*np.sin(a1+b1), -1/r*np.cos(a1+b1), -l1/r*np.cos(b1)],
|
||||
[1/r*np.sin(a2+b2), -1/r*np.cos(a2+b2), -l2/r*np.cos(b2)],
|
||||
[1/r*np.sin(a3+b3), -1/r*np.cos(a3+b3), -l3/r*np.cos(b3)]
|
||||
])
|
||||
F = np.linalg.inv(J)
|
||||
|
||||
def controller_omni_pid(t, X_I, dX_I, target_position):
|
||||
"""PID Controller with dynamic target position"""
|
||||
global int_err
|
||||
|
||||
# PID parameters
|
||||
Kp_t = 2; Kp_r = 2
|
||||
Kd_t = 0.5; Kd_r = 0.5
|
||||
Ki_t = 0.1; Ki_r = 0.1
|
||||
|
||||
# Use target position from parameters instead of hardcoded values
|
||||
X_I_des = target_position.reshape(-1, 1)
|
||||
pos_err = X_I_des - X_I
|
||||
vel_err = np.zeros((3, 1)) - dX_I
|
||||
int_err = int_err + pos_err
|
||||
|
||||
# PID control output
|
||||
dX_I_des = np.array([
|
||||
[Kp_t*pos_err[0,0] + Kd_t*vel_err[0,0] + Ki_t*int_err[0,0]],
|
||||
[Kp_t*pos_err[1,0] + Kd_t*vel_err[1,0] + Ki_t*int_err[1,0]],
|
||||
[Kp_r*pos_err[2,0] + Kd_r*vel_err[2,0] + Ki_r*int_err[2,0]]
|
||||
])
|
||||
|
||||
# Coordinate transform
|
||||
R_RI = np.array([[ np.cos(X_I[2,0]), np.sin(X_I[2,0]), 0.0],
|
||||
[-np.sin(X_I[2,0]), np.cos(X_I[2,0]), 0.0],
|
||||
[ 0.0, 0.0, 1.0]])
|
||||
dX_R_des = R_RI @ dX_I_des
|
||||
U = J @ dX_R_des
|
||||
return U
|
||||
|
||||
def run_simulation():
|
||||
"""Run simulation using Gymnasium environment with PID control to dynamic target"""
|
||||
global int_err
|
||||
|
||||
# Initialize environment with fixed target for reproducible results
|
||||
# You can set random_target=True for random target generation
|
||||
env = OmniRobotEnv(render_mode="human", random_target=False)
|
||||
observation, _ = env.reset()
|
||||
|
||||
# Expand render bounds to show target position (default target is at [10,5])
|
||||
env.set_render_bounds((-2, 12), (-2, 8))
|
||||
|
||||
# Initialize integral error
|
||||
int_err = np.zeros((3, 1))
|
||||
|
||||
print("Starting Omnidirectional Robot PID Control Simulation")
|
||||
print("Controller: PID control to dynamic target position")
|
||||
print(f"Target position: [{observation[7]:.2f}, {observation[8]:.2f}, {observation[9]:.2f}]")
|
||||
|
||||
for step in range(1000):
|
||||
# Extract controller inputs from observation
|
||||
# New observation format: [x, y, theta, dx, dy, dtheta, time, target_x, target_y, target_theta]
|
||||
time = observation[6] # Current time
|
||||
X_I = observation[:3].reshape(-1, 1) # State [x, y, theta]
|
||||
dX_I = observation[3:6].reshape(-1, 1) # Derivatives [dx, dy, dtheta]
|
||||
target_position = observation[7:10] # Target [target_x, target_y, target_theta]
|
||||
|
||||
# Call PID controller with dynamic target
|
||||
U = controller_omni_pid(time, X_I, dX_I, target_position)
|
||||
|
||||
# Step environment
|
||||
observation, reward, terminated, truncated, _ = env.step(U.flatten())
|
||||
|
||||
# Render the environment
|
||||
env.render()
|
||||
|
||||
# Check if target reached
|
||||
if terminated:
|
||||
print(f"Target reached at step {step}! Reward: {reward:.2f}")
|
||||
break
|
||||
elif truncated:
|
||||
print(f"Maximum steps reached at step {step}")
|
||||
break
|
||||
|
||||
input("Press Enter to close the simulation window...")
|
||||
env.close()
|
||||
print("Simulation completed")
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_simulation()
|
Loading…
x
Reference in New Issue
Block a user